Characterization of the state of in situ stress by hydraulic fracturing for a nuclear waste repository in basalt

1981 ◽  
Vol 6 ◽  
Author(s):  
Sudesh K. Singh

ABSTRACTFourteen Canadian clays and clay admixtures were subjected to simulated nuclear waste repository environments. The present work is concerned with the montmorillonite-dominant materials only. The montmorillonite-dominant samples showed significant leaching on interaction with deionized water. On heating the samples at 200°C for 500 hours, montmorillomites lost intermicellar water completely and acquired cusp-like to cylindrical morphologies. The loss of water and the morphological changes in montmorillonites significantly altered the engineering characteristics. Permeability, shrinkage limits, compactability and shear strength varied in response to the dominant exchange cation in the structure of montmorillonites and the presence of other mineral components in the materials. The synthetic granite water reacted with montmorillonites and led to changes in chemical and mineralogical compositions, crystalline state and engineering properties.


2012 ◽  
Vol 252 ◽  
pp. 278-288 ◽  
Author(s):  
Won-Jin Cho ◽  
Jin-Sub Kim ◽  
Changsoo Lee ◽  
Sangki Kwon ◽  
Jong-Won Choi

MRS Advances ◽  
2016 ◽  
Vol 1 (62) ◽  
pp. 4123-4129 ◽  
Author(s):  
Weixuan Ding ◽  
Johannes A. Botha ◽  
Bruce C. Hanson ◽  
Ian T. Burke

ABSTRACTLarge stores of unstable waste uranic materials such as fluorides or nitrates exist internationally due to legacy civil nuclear enrichment activities. Conversion of these uranic materials to layered metal uranates prior to disposal is possible via aqueous quench - precipitation type reactions. Previous studies1 have shown facile in-situ formation of geologically persistent and labile uranate colloids2 under simulated nuclear waste repository conditions, though the effects of local solution metal-uranium ratios on uranate stoichiometry have yet to be covered. This affects our understanding of how key radionuclides present in repository porewaters such as strontium or caesium may be sequestered in these uranate structures. In this work, we demonstrate a synthesis reaction for calcium monouranate particles via rapid anhydrous curing of a sol-gel. We present some results showing aqueous nucleation of uranate nanoparticles and their phase transformations during thermal curing as well as the effects of solution phase calcium loading on uranate phase purity in the cured particles.


Sign in / Sign up

Export Citation Format

Share Document