886311 Design and performance of large diameter cast in place pile groups subjected to lateral loads

2013 ◽  
Vol 27 (2) ◽  
pp. 191-202 ◽  
Author(s):  
Han-Long Liu ◽  
Gang-Qiang Kong ◽  
Xuan-Ming Ding ◽  
Yu-Min Chen

Author(s):  
Charles W. W. Ng ◽  
Limin Zhang ◽  
Dora C. N. Nip

Author(s):  
Mohammed A. Al-Neami ◽  
Zeena W. Samueel ◽  
Marwah M. Al-Noori
Keyword(s):  

2020 ◽  
Vol 8 (10) ◽  
pp. 800
Author(s):  
Miloš Marjanović ◽  
Mirjana Vukićević ◽  
Diethard König

Marine and harbor structures, wind turbines, bridges, offshore platforms, industrial chimneys, retaining structures etc. can be subjected to significant lateral loads from various sources. Appropriate assessment of the foundations capacity of these structures is thus necessary, especially when these structures are supported by pile groups. The pile group interaction effects under lateral loading have been investigated intensively in past decades, and the most of the conducted studies have considered lateral loading that acts along one of the two orthogonal directions, parallel to the edge of pile group. However, because of the stochastic nature of its source, the horizontal loading on the pile group may have arbitrary direction. The number of studies dealing with the pile groups under arbitrary loading is very limited. The aim of this paper is to investigate the influence of the arbitrary lateral loading on the pile group response, in order to improve (extend) the current design approach for laterally loaded pile groups. Free head, flexible bored piles in sand were analyzed through the extensive numerical study. The main hypothesis of the research is that some critical pile group configurations, loading directions, and soil conditions exist, which can lead to the unsafe structural design. Critical pile positions inside the commonly used pile group configurations are identified with respect to loading directions. The influence of different soil conditions was discussed.


2006 ◽  
Vol 46 (5) ◽  
pp. 605-612 ◽  
Author(s):  
K. Shanker ◽  
P.K. Basudhar ◽  
N.R. Patra

2007 ◽  
Vol 566 ◽  
pp. 9-14 ◽  
Author(s):  
I. da S. Rego ◽  
K.N. Sato ◽  
S. Kugimiya ◽  
T. Aoki ◽  
Y. Miyoshi ◽  
...  

This paper reports on the design and performance of a large diameter diaphragmless shock tube that has been recently developed in order to experimentally study various basic characteristics of the gas-dynamic laser (GDL). The main engineering element of the shock tube is a diaphragm-like sliding piston (in place of a rupturing diaphragm) by which normal shock waves are formed. The role of such a structure in generating repeatable shock waves is discussed. The shock tube performs in good accordance with the simple shock tube theory, as has been verified so far by experiments with some conventional lasing gases (gaseous mixtures of CO2 and N2 and those diluted with an excess of He) at shock wave Mach numbers ranging from 1 to 5. Recent results of the stagnation conditions achieved in the shock tube with application to GDL experiments are included as well.


Sign in / Sign up

Export Citation Format

Share Document