Three-dimensional stress state and fracturing around cavities in overstressed weak rock

1996 ◽  
Vol 118 (4) ◽  
pp. 399-406 ◽  
Author(s):  
W. J. Koves ◽  
S. Nair

A specialized shell-intersection finite element, which is compatible with adjoining shell elements, has been developed and has the capability of physically representing the complex three-dimensional geometry and stress state at shell intersections (Koves, 1993). The element geometry is a contoured shape that matches a wide variety of practical nozzle configurations used in ASME Code pressure vessel construction, and allows computational rigor. A closed-form theory of elasticity solution was used to compute the stress state and strain energy in the element. The concept of an energy-equivalent nodal displacement and force vector set was then developed to allow complete compatibility with adjoining shell elements and retain the analytical rigor within the element. This methodology provides a powerful and robust computation scheme that maintains the computational efficiency of shell element solutions. The shell-intersection element was then applied to the cylinder-sphere and cylinder-cylinder intersection problems.


2010 ◽  
Vol 160-162 ◽  
pp. 1425-1431
Author(s):  
Kun Yong Zhang ◽  
Yan Gang Zhang ◽  
Chi Wang

Most soil constitutive models were developed based on the traditional triaxial tests with isotropic assumption, in which the load is applied as the major principal stress direction and the other two principal stresses are symmetric. When such isotropic models are applied to practical analysis, stress induced anisotropy under complex stress state and the middle principal stress effects are often neglected, thus there are many disagreements between the calculated results and the infield testing data. To simulate the practical loading process, true triaxial tests were carried out on geomaterial under three-dimensional stress state. It was found that the stress induced anisotropy effects are remarkable and the middle principal stress effects are obvious because of the initial three-dimensional stress state. Such kind of stress-induced anisotropy could have important impact on the numerical analysis results and should be taken into consideration when developing the constitutive model.


2018 ◽  
Vol 55 (6) ◽  
pp. 810-828 ◽  
Author(s):  
Abtin Jahanbakhshzadeh ◽  
Michel Aubertin ◽  
Li Li

Backfill is commonly used world-wide in underground mines to improve ground stability and reduce solid waste disposal on the surface. Practical solutions are required to assess the stress state in the backfilled stopes, as the stress state is influenced by the fill settlement that produces a stress transfer to the adjacent rock walls. The majority of existing analytical and numerical solutions for the stresses in backfilled openings were developed for two-dimensional (plane strain) conditions. In reality, mine stopes have a limited extension in the horizontal plane so the stresses are influenced by the four walls. This paper presents recent three-dimensional (3D) simulations results and a new 3D closed-form solution for the vertical and horizontal stresses in inclined backfilled stopes with parallel walls. This solution takes into account the variation of the stresses along the opening width and height, for various inclination angles and fills properties. The numerical results are used to validate the analytical solution and illustrate how the stress state varies along the opening height, length, and width, for different opening sizes and inclination angles of the footwall and hanging wall. Experimental results are also used to assess the validity of the proposed solution.


1996 ◽  
Vol 7 (4) ◽  
pp. 293-308
Author(s):  
E. Ol'khovik, ◽  
O. Figovsky, ◽  
V. Feigin,

Sign in / Sign up

Export Citation Format

Share Document