A Finite Element for the Analysis of Shell Intersections

1996 ◽  
Vol 118 (4) ◽  
pp. 399-406 ◽  
Author(s):  
W. J. Koves ◽  
S. Nair

A specialized shell-intersection finite element, which is compatible with adjoining shell elements, has been developed and has the capability of physically representing the complex three-dimensional geometry and stress state at shell intersections (Koves, 1993). The element geometry is a contoured shape that matches a wide variety of practical nozzle configurations used in ASME Code pressure vessel construction, and allows computational rigor. A closed-form theory of elasticity solution was used to compute the stress state and strain energy in the element. The concept of an energy-equivalent nodal displacement and force vector set was then developed to allow complete compatibility with adjoining shell elements and retain the analytical rigor within the element. This methodology provides a powerful and robust computation scheme that maintains the computational efficiency of shell element solutions. The shell-intersection element was then applied to the cylinder-sphere and cylinder-cylinder intersection problems.

Author(s):  
Bryan Dunlap ◽  
Hassan Ziada ◽  
John Julyk

Typically the use of SHELL finite elements to model nozzle/vessel interfaces will not include details of the weld at the interface. The omission of the weld details from SHELL element models is due to the difficulty in implementing such details and the assumption that additional interface stiffness due to the weld will have a negligible effect on results at locations of interest for Code evaluation. This study will demonstrate a proposed method for modeling weld details with SHELL elements and then evaluate the magnitude of the weld stiffness effect on results and Code compliance. The method of modeling the weld details with SHELL elements used in this study will follow the guidance provided by ASME BPVC Section VIII, Division 2, Annex 5.A [2] for such interfaces. Models of nozzle/vessel interfaces will be shown comparing results of SOLID element models with and without the weld detail, and then SHELL element models both with and without the weld detail. The results from these models will be evaluated and recommendations for future modeling and evaluation of nozzle/shell interfaces with SHELL elements will be offered.


Author(s):  
Hong Shen ◽  
Jun Hu ◽  
Zhenqiang Yao

Efficient laser forming modeling for industrial application is still in the developing stage and many researchers are in the process of modifying it. Conventional three-dimensional finite element models are still expensive on computational time. In this paper, a finite element model adopting a shell-solid coupling technique is developed for the thermomechanical analysis of laser forming process. In the shell-solid coupling method, an additional shell element plane is utilized to transfer heat flux and displacement from the solid elements to the shell elements. The effects of the additional interface shell element thickness on temperature distribution and final distortion are investigated. The presented shell-solid coupling method is evaluated by the results of three-dimensional simulations and experimental data.


Author(s):  
Hossam S. Badawi ◽  
Sherif A. Mourad ◽  
Sayed M. Metwalli

Abstract For a Computer Aided Design of a concrete truck mixer, a six cubic meter concrete mixer drum is analyzed using the finite element method. The complex mixer drum structure is subjected to pressure loading resulting from the plain concrete inside the drum, in addition to its own weight. The effect of deceleration of the vehicle and the rotational motion of the drum on the reactions and stresses are also considered. Equivalent static loads are used to represent the dynamic loading effects. Three-dimensional shell elements are used to model the drum, and frame elements are used to represent a ring stiffener around the shell. Membrane forces and bending stresses are obtained for different loading conditions. Results are also compared with approximate analysis. The CAD procedure directly used the available drafting and the results were used effectively in the design of the concrete mixer drum.


Author(s):  
K. S. Narayana ◽  
R. T. Naik ◽  
R. C. Mouli ◽  
L. V. V. Gopala Rao ◽  
R. T. Babu Naik

The work presents the Finite element study of the effect of elliptical chords on the static and dynamic strength of tubular T-joints using ANSYS. Two different geometry configurations of the T-joints have been used, namely Type-1 and Type-2. An elastic analysis has been considered. The Static loading conditions used are: axial load, compressive load, In-plane bending (IPB) and Out-plane bending (OPB). The natural frequencies analysis (dynamic loading condition) has also been carried out. The geometry configurations of the T-joints have been used, vertical tubes are called brace and horizontal tubes are called chords. The joint consists of brace joined perpendicular to the circular chord. In this case the ends of the chord are held fixed. The material used is mild steel. Using ANSYS, finite element modeling and analysis of T-joint has been done under the aforementioned loading cases. It is one of the most powerful methods in use but in many cases it is an expensive analysis especially due to elastic–plastic and creep problems. Usually, three dimensional solid elements or shell elements or the combination of two types of elements are used for generating the tubular joints mesh. In tubular joints, usually the fluid induced vibrations cause the joint to fail under resonance. Therefore the natural frequencies analysis is also an important issue here. Generally the empirical results are required as guide or comparison tool for finite element investigation. It is an effective way to obtain confidence in the results derived. Shell elements have been used to model the assembled geometry. Finite element ANSYS results have been validated with the LUSAS FEA and experimental results, that is within the experimentation error limit of ten percentage.


2004 ◽  
Vol 120 ◽  
pp. 347-354
Author(s):  
F. Faure ◽  
J.-M. Bergheau ◽  
J.-B. Leblond

Finite element simulations can be used to evaluate residual stresses and distortions induced by welding. Such simulations must account for complex interactions between thermal, metallurgical and mechanical phenomena. “Local” simulations are often sufficient for satisfactory predictions of residual stresses in the heat-affected zone (HAZ), but 3D “global” simulations are often necessary to calculate distortions, which can be important even far from the HAZ. In order to avoid such heavy calculations, a special shell element is proposed for the simulation of welding of thin structures. The thermal calculation involves only one nodal degree of freedom but fully accounts for boundary conditions on the faces of the shell. The metallurgical and mechanical calculations are based on a “multi-layer” approach. Due account is taken of transformation plasticity in the mechanical calculation. Numerical results obtained with this approach are compared to those of experiments and some 3D simulation.


1997 ◽  
Vol 119 (2) ◽  
pp. 161-166
Author(s):  
J. S. Porowski ◽  
W. J. O’Donnell ◽  
R. H. Reid

Within the last two decades, the use of elastic finite element analyses to demonstrate design compliance with the rules of the ASME Code has become a generally accepted engineering practice. Linearized stresses from these analyses are commonly used to evaluate primary stresses. For redundant structures or complex structural details, the use of such analyses, instead of simple equilibrium models, often results in significant overconservatism. Direct use of finite element results is often preferred because equilibrium solutions are not unique and effective equilibrium models are not easily constructed for complex three-dimensional structures. However, finite element analyses include secondary stresses, even for pressure, mechanical, and shock loading. For primary stress evaluation, the ASME Code allows the use of inelastic methods based on lower-bound solutions and plastic analysis. For primary stresses, the Code requires equilibrium to be satisfied without violating the yield strength of the material. The use of finite element inelastic analysis to partition mechanically induced stresses into the primary and secondary categories was introduced by Porowski et al. (1993). The latter provides a detailed discussion of the technical approach and the results for the axisymmetric junction between the plate and shell in a pressure vessel. This example was selected by the Session Organizer as a benchmark case to compare the efficiency of various analytical approaches presented at the Session. The authors have since used this approach to design more efficient structures. The practical application of this method to reduce the weight of complex redundant structures designed to meet primary stress limits is described herein for a more complex three-dimensional case. Plastic design utilizes the ability of actual materials to find the most efficient load distribution. A heat exchanger subjected to pressure, accelerations, and nozzle external loads is evaluated as a practical example. The results of elastic analyses are compared with those obtained by inelastic analyses. It is shown that inelastic analyses can be used effectively to reduce the weight of structures using only modern PCs for the engineering computations, as illustrated in this paper.


Author(s):  
R. C. Dragt ◽  
J. Kraus ◽  
C. L. Walters

Simulation of failure in thin-walled structures is critical for the correct determination of crash performance of ships and offshore structures. Typically, shell elements are used, but these elements are not able to adequately capture local failure, especially inside of a neck. This paper addresses these gaps by adapting the Bridgman (1952) model of a neck inside of a plate by making it three-dimensional and offering an estimate of the relationship between state parameters of a shell element and the geometry inside of a neck. Finally, recommendations are also made about how to interface this information with the Modified Mohr-Coulomb failure locus to create a practical algorithm for assessing failure in shell elements.


2013 ◽  
Vol 377 ◽  
pp. 3-7
Author(s):  
Ze Long You ◽  
Xiang Ming Zhang ◽  
Kui Du

An ANSYS-based "volume-spring-plate" three-dimensional finite element model is established in this paper to analyze steel plate with a rectangular hole reinforced by double-side bonding patch, in which the plate is simulated by solid45 8-node 3D element, the adhesive layer is simulated by linear elastic spring element combin14, and the patch is simulated by shell element. Relative intensity, relative stiffness and yield load rising rate of a patched steel plate with regard to parameters, such as the patch length, width, the number of patch layer and ply orientation are studied. The results indicate that composite bonded repair can effectively restore the mechanical properties of the structure and improve the service life.


2014 ◽  
Vol 980 ◽  
pp. 81-85 ◽  
Author(s):  
Kaoua Sid-Ali ◽  
Mesbah Amar ◽  
Salah Boutaleb ◽  
Krimo Azouaoui

This paper outlines a finite element procedure for predicting the mechanical behaviour under bending of sandwich panels consisting of aluminium skins and aluminium honeycomb core. To achieve a rapid and accurate stress analysis, the sandwich panels have been modelled using shell elements for the skins and the core. Sandwich panels were modelled by a three-dimensional finite element model implemented in Abaqus/Standard. By this model the influence of the components on the behaviour of the sandwich panel under bending load was evaluated. Numerical characterization of the sandwich structure, is confronted to both experimental and homogenization technique results.


2013 ◽  
Vol 21 (04) ◽  
pp. 1350014 ◽  
Author(s):  
PING RONG ◽  
OTTO VON ESTORFF ◽  
LORIS NAGLER ◽  
MARTIN SCHANZ

Double wall systems consisting of thin plates separated by an air gap are common light-weighted wall structures with high transmission loss. Generally, these plate-like structures are modeled in a finite element analysis with shell elements and volume elements for the air (fluid) layer. An alternative approach is presented in this paper, using shell elements for the air layer as well. First, the element stiffness matrix is obtained by removing the thickness dependence of the variational form of the Helmholtz equation by use of a power series. Second, the coupling between the acoustical shell element and the elastic structure is described. To verify the new shell element, a simple double wall system is considered. Comparing the predicted sound field with the results from a commercial FE software (with a single layer of volume elements) a very good agreement is observed. At the same time, employing the new elements with a third-order power series (4 DOFs per node), the calculation time is reduced.


Sign in / Sign up

Export Citation Format

Share Document