Boundary zone superposition method for linear and nonlinear dynamic analysis of infinite domain problems

1981 ◽  
Vol 103 (1) ◽  
pp. 27-32 ◽  
Author(s):  
V. N. Shah ◽  
A. J. Hartmann

A modal superposition method for the nonlinear dynamic analysis of a structure subjected to multiple support motions is presented. The nonlinearities are due to clearances between the components and their supports. The finite element method is used to derive the equations of motion with the nonlinearities represented by a pseudo force vector. The displacement response may be divided into two parts: elastic deformation and rigid body motion. The presence of rigid body motion necessitates the inclusion of the higher modes in the transient analysis. The modal superposition method is used to analyze the dynamic response of one loop of the nuclear steam supply system. This loop has nonlinear supports and is subjected to nonuniform seismic excitations at the supports. It is shown that the computational cost of the modal superposition method is lower than that of the direct integration.


2021 ◽  
Vol 3 (11) ◽  
Author(s):  
Hesam Nazari ◽  
Masoud Babaei ◽  
Faraz Kiarasi ◽  
Kamran Asemi

Abstract In this study, we present a numerical solution for geometrically nonlinear dynamic analysis of functionally graded material rectangular plates excited to a moving load based on first-order shear deformation theory (FSDT) for the first time. To derive the governing equations of motion, Hamilton’s principle, nonlinear Von Karman assumptions and FSDT are used. Finally, the governing equations of motion are solved by employing the generalized differential quadratic method as a numerical solution. Natural frequencies, dynamic bending behavior and stresses of the plate for linear and nonlinear type of geometrically strain–displacement relations and different factors, including the magnitude and velocity of moving load, length ratio, power law exponent and various edge conditions are obtained and compared. Article highlights Developing generalized differential quadrature method (GDQM) solution based on FSDT for dynamic analysis of FGM plate excited by a moving load for the first time. Comparison of linear and nonlinear dynamic response of plate by considering Von-Karman assumption. Observing considerable difference between linear and nonlinear results


2018 ◽  
Vol 156 ◽  
pp. 351-362 ◽  
Author(s):  
Yi Hui ◽  
Hou Jun Kang ◽  
Siu Seong Law ◽  
Zheng Qing Chen

Sign in / Sign up

Export Citation Format

Share Document