Validity of two dimensional modeling for scattering of elastic waves by three dimensional surface topography of arbitrary shape

1991 ◽  
Vol 06 (39) ◽  
pp. 3591-3600 ◽  
Author(s):  
HIROSI OOGURI ◽  
NAOKI SASAKURA

It is shown that, in the three-dimensional lattice gravity defined by Ponzano and Regge, the space of physical states is isomorphic to the space of gauge-invariant functions on the moduli space of flat SU(2) connections over a two-dimensional surface, which gives physical states in the ISO(3) Chern–Simons gauge theory. To prove this, we employ the q-analogue of this model defined by Turaev and Viro as a regularization to sum over states. A recent work by Turaev suggests that the q-analogue model itself may be related to an Euclidean gravity with a cosmological constant proportional to 1/k2, where q=e2πi/(k+2).


Wear ◽  
2007 ◽  
Vol 262 (3-4) ◽  
pp. 395-410 ◽  
Author(s):  
N. Senin ◽  
M. Ziliotti ◽  
R. Groppetti

Author(s):  
S. Khajehpour ◽  
R. G. Sauve´ ◽  
N. Badie

A method has been developed to incorporate the local three-dimensional shell behavior of two concentric tubes in the two-dimensional beam modeling of the problem. The two dimensional modeling of fuel channels in CANDU pressurized heavy water nuclear reactors is used in lieu of a more accurate three dimensional finite element approach in order to reduce the on-line simulation time which greatly affects the SLAR (Spacer Location And Repositioning) maintenance operation cost during outage. However, effort must be made to include the three-dimensional shell behavior of these channels into the two-dimensional modeling. In recent studies a nonlinear force-dependent model for contact stiffness between the calandria tube and pressure tube has been developed. However, local deformation of calandria the tube at spacer locations due to in-reactor creep leads to settling of the spacer into the calandria tube that consequently reduces the gap between the two tubes. In this work, the effect of local deformation (elastic and creep) of calandria tubes on modeling of contact at spacer locations is assessed using a three dimensional finite element code. The result is incorporated into a two-dimensional beam model of the problem as a reduction in size of the spacers that separate the two tubes. It is shown that the proposed method increases the accuracy of prediction of contact time and the spacer. In general, the method described in this paper suggests a way to incorporate local shell deformation into beam models of slender shell structure.


2019 ◽  
Author(s):  
Igor Popov ◽  
Irina Blinova ◽  
Anton Boitsev ◽  
Andre Froehly ◽  
Hagen Neidhardt

Sign in / Sign up

Export Citation Format

Share Document