21. Whole-cell recordings from motoneurones in rat spinal cord in vitro with attached dorsal and ventral roots

1994 ◽  
Vol 52 (1) ◽  
pp. A10
Author(s):  
C.Q. Cao ◽  
R.H. Evans ◽  
P.M. Headley
2008 ◽  
Vol 99 (1) ◽  
pp. 37-48 ◽  
Author(s):  
Jens Peter Gabriel ◽  
Riyadh Mahmood ◽  
Alexander M. Walter ◽  
Alexandros Kyriakatos ◽  
Giselbert Hauptmann ◽  
...  

The zebrafish is an attractive model system for studying the function of the spinal locomotor network by combining electrophysiological, imaging, and genetic approaches. Thus far, most studies have been focusing on embryonic and larval stages. In this study we have developed an in vitro preparation of the isolated spinal cord from adult zebrafish in which locomotor activity can be induced while the activity of single neurons can be monitored using whole cell recording techniques. Application of NMDA elicited rhythmic locomotor activity that was monitored by recording from muscles or ventral roots in semi-intact or isolated spinal cord preparations, respectively. This rhythmic activity displayed a left–right alternation and a rostrocaudal delay. Blockade of glycinergic synaptic transmission by strychnine switched the alternating activity into synchronous bursting in the left and right sides as well as along the rostrocaudal axis. Whole cell recordings from motoneurons showed that they receive phasic synaptic inputs that were correlated with the locomotor activity recorded in ventral roots. This newly developed in vitro preparation of the adult zebrafish spinal cord will allow examination of the organization of the spinal locomotor network in an adult system to complement studies in zebrafish larvae and new born rodents.


1998 ◽  
Vol 79 (2) ◽  
pp. 743-752 ◽  
Author(s):  
S. Hochman ◽  
B. J. Schmidt

Hochman, S. and B. J. Schmidt. Whole cell recordings of lumbar motoneurons during locomotor-like activity in the in vitro neonatal rat spinal cord. J. Neurophysiol. 79: 743–752, 1998. Whole cell current- and voltage-clamp recordings were obtained from lumbar motoneurons in the isolated neonatal rat spinal cord to characterize the behavior of motoneurons during neurochemically induced locomotor-like activity. Bath application of serotonin (10–100 μM) in combination with N-methyl-d-aspartate (1–12 μM) initially produced tonic membrane depolarization (mean = 26 mV), increased input resistance, decreased rheobase, and increased spike inactivation in response to depolarizing current pulse injections. After the initial tonic depolarization, rhythmic fluctuations of the motoneuron membrane potential (locomotor drive potentials; LDPs) developed that were modulated phasically in association with ventral root discharge. The peak and trough voltage levels of the LDP fluctuated above and below the membrane potential recorded immediately before the onset of rhythmic activity. Similarly, firing frequency was modulated above and below prelocomotion firing rates (in those motoneurons that displayed neurochemically induced tonic firing immediately before the onset of rhythmic activity). These observations are consistent with an alternation between phasic excitatory and inhibitory synaptic drives. The amplitude of LDPs and rhythmic excitatory drive current increased with membrane depolarization from −80 to −40 mV and then decreased with further depolarization, thus displaying nonlinear voltage-dependence. Faster frequency, small amplitude voltage fluctuations were observed superimposed on the depolarized phase of LDPs. In some motoneurons, the trajectory of these superimposed fluctuations was consistent with a synaptic origin, whereas in other cells, the regular sinusoidal appearance of the fluctuations and the occurrence of superimposed plateau potentials were more compatible with the activation of an intrinsic membrane property. One motoneuron displayed exclusively excitatory phasic drive, and another motoneuron was characterized by inhibitory phasic drive alone, during rhythmic activity. These findings are compatible with the concept of a central pattern generator that is capable of delivering both excitatory and inhibitory drive to motoneurons during locomotion. The data also suggest that the rhythmic excitatory and inhibitory outputs of the hypothetical half-center model can be dissociated and operate in isolation.


2004 ◽  
Vol 190 (5) ◽  
pp. 343-357 ◽  
Author(s):  
F. Clarac ◽  
E. Pearlstein ◽  
J. F. Pflieger ◽  
L. Vinay

1999 ◽  
Vol 82 (2) ◽  
pp. 1074-1077 ◽  
Author(s):  
Isabelle Delvolvé ◽  
Pascal Branchereau ◽  
Réjean Dubuc ◽  
Jean-Marie Cabelguen

An in vitro brain stem–spinal cord preparation from an adult urodele ( Pleurodeles waltl) was developed in which two fictive rhythmic motor patterns were evoked by bath application of N-methyl-d-aspartate (NMDA; 2.5–10 μM) with d-serine (10 μM). Both motor patterns displayed left-right alternation. The first pattern was characterized by cycle periods ranging between 2.4 and 9.0 s (4.9 ± 1.2 s, mean ± SD) and a rostrocaudal propagation of the activity in consecutive ventral roots. The second pattern displayed longer cycle periods (8.1–28.3 s; 14.2 ± 3.6 s) with a caudorostral propagation. The two patterns were inducible after a spinal transection at the first segment. Preliminary experiments on small pieces of spinal cord further suggested that the ability for rhythm generation is distributed along the spinal cord of this preparation. This study shows that the in vitro brain stem–spinal cord preparation from Pleurodeles waltl may be a useful model to study the mechanisms underlying the different axial motor patterns and the flexibility of the neural networks involved.


Sign in / Sign up

Export Citation Format

Share Document