Inter-stimulus interval in audiometry for neonates

1988 ◽  
Vol 15 (2) ◽  
pp. 173-178 ◽  
Author(s):  
Sanford E. Gerber ◽  
Traci K. Davis ◽  
Kathleen M. Mastrini
Author(s):  
Dongxin Liu ◽  
Jiong Hu ◽  
Ruijuan Dong ◽  
Jing Chen ◽  
Gabriella Musacchia ◽  
...  

2013 ◽  
Author(s):  
Zacharias Vamvakousis ◽  
Rafael Ramirez

P300-based brain-computer interfaces (BCIs) are especially useful for people with illnesses, which prevent them from communicating in a normal way (e.g. brain or spinal cord injury). However, most of the existing P300-based BCI systems use visual stimulation which may not be suitable for patients with sight deterioration (e.g. patients suffering from amyotrophic lateral sclerosis). Moreover, P300-based BCI systems rely on expensive equipment, which greatly limits their use outside the clinical environment. Therefore, we propose a multi-class BCI system based solely on auditory stimuli, which makes use of low-cost EEG technology. We explored different combinations of timbre, pitch and spatial auditory stimuli (TimPiSp: timbre-pitch-spatial, TimSp: timbre-spatial, and Timb: timbre-only) and three inter-stimulus intervals (150ms, 175ms and 300ms), and evaluated our system by conducting an oddball task on 7 healthy subjects. This is the first study in which these 3 auditory cues are compared. After averaging several repetitions in the 175ms inter-stimulus interval, we obtained average selection accuracies of 97.14%, 91.43%, and 88.57% for modalities TimPiSp, TimSp, and Timb, respectively. Best subject’s accuracy was 100% in all modalities and inter-stimulus intervals. Average information transfer rate for the 150ms inter-stimulus interval in the TimPiSp modality was 14.85 bits/min. Best subject’s information transfer rate was 39.96 bits/min for 175ms Timbre condition. Based on the TimPiSp modality, an auditory P300 speller was implemented and evaluated by asking users to type a 12-characters-long phrase. Six out of 7 users completed the task. The average spelling speed was 0.56 chars/min and best subject’s performance was 0.84 chars/min. The obtained results show that the proposed auditory BCI is successful with healthy subjects and may constitute the basis for future implementations of more practical and affordable auditory P300-based BCI systems.


1961 ◽  
Vol 13 (1) ◽  
pp. 15-18 ◽  
Author(s):  
P. D. McCormack ◽  
A. W. Prysiazniuk

Cephalalgia ◽  
2002 ◽  
Vol 22 (2) ◽  
pp. 132-136 ◽  
Author(s):  
S Bender ◽  
M Weisbrod ◽  
U Just ◽  
U Pfüller ◽  
P Parzer ◽  
...  

Increased negativity of contingent negative variation (CNV) in adult migraineurs is thought to reflect cortical hyperexcitability. CNV amplitude changes with age in healthy adults. Recently, evidence emerged that this might not be the case for migraineurs. Our study investigates age-dependency of CNV during childhood age. Seventy-six healthy controls and 61 children with migraine without aura (IHS code 1.1) between 6 and 18 years were examined using an acoustic S1-S2-CNV-paradigm with a 3-s inter-stimulus interval. The amplitude of the late component of CNV, as well as total CNV at the vertex (Cz according to the international 10-20 system), were significantly higher in migraineurs without aura than in controls. Healthy controls showed increasing amplitudes of CNV with age, whereas in migraine children without aura amplitudes did not change. Thus group differences were reduced during adolescence. Increased CNV negativity might reflect a biological vulnerability to migraine, rather than being a result of chronification. Migraineurs seem to lack age-dependent development of CNV also during early age, which supports the hypothesis of migraine as a maturation disorder.


2019 ◽  
Vol 82 (1) ◽  
pp. 30-34 ◽  
Author(s):  
Yu-Chien Tsao ◽  
Kuan-Lin Lai ◽  
Jen-Tse Chen ◽  
Kwong-Kum Liao ◽  
Shuu-Jiun Wang

Author(s):  
Daisuke Sato ◽  
Koya Yamashiro ◽  
Yudai Yamazaki ◽  
Koyuki Ikarashi ◽  
Hideaki Onishi ◽  
...  

We aimed to verify whether indirect-wave (I-wave) recruitment and cortical inhibition can regulate or predict the plastic response to paired associative stimulation with an inter-stimulus interval of 25 ms (PAS25), and also whether water immersion (WI) can facilitate the subsequent PAS25-induced plasticity. To address the first question, we applied transcranial magnetic stimulation (TMS) to the M1 hand area, while alternating the direction of the induced current between posterior-to-anterior and anterior-to-posterior to activate two independent synaptic inputs to the corticospinal neurons. Moreover, we used a paired stimulation paradigm to evaluate the short-latency afferent inhibition (SAI) and short-interval intracortical inhibition (SICI). To address the second question, we examined the motor evoked potential (MEP) amplitudes before and after PAS25, with and without WI, and used the SAI, SICI, and MEP recruitment curves to determine the mechanism underlying priming by WI on PAS25. We demonstrated that SAI, with an inter-stimulus interval of 25 ms, might serve as a predictor of the response to PAS25, whereas I-wave recruitment evaluated by the MEP latency difference was not predictive of the PAS25 response, and found that 15 min WI prior to PAS25 facilitated long-term potentiation (LTP)-like plasticity due to a homeostatic increase in cholinergic activity.


Sign in / Sign up

Export Citation Format

Share Document