Advanced energy conversion for large-scale electrical power generation

1981 ◽  
Vol 7 ◽  
pp. 229-232 ◽  
Author(s):  
L.H.Th. Rietjens
Author(s):  
Colin F. McDonald

In long–term U.S. energy planning three major factors are paramount, (1) environmental considerations will play a major role in power plant design, (2) alternate (and cleaner burning) transportation fuels must be introduced to wean the country from dependence on imported oil, and (3) increasing reliance will be placed on indigenous resources, namely uranium and coal. It will likely take several decades for the above goals to be implemented on a large scale, and will surely necessitate the utilization of advanced technologies. A proposed advanced version of the modular helium reactor (MHR) has bi–modal operating capability in that it can be used for power generation, and the emission–free production of clean–burning fuels to meet transportation needs. The advanced hybrid MHR plant concept utilizes a direct cycle helium nuclear gas turbine for electrical power generation (with an efficiency potential of 50%), and in addition embodies an intermediate heat transport loop for high temperature process heat needed for the emission–free conversion of coal into future cleaner burning transportation fuels, namely methanol, synthetic natural gas, or hydrogen. The high grade sensible reject heat from both the prime–mover and process heat loop is ideally suited for desalination, and thus gives the plant capability for generating three revenue streams. This paper highlights an advanced very high temperature hybrid plant concept, and discusses the enabling technologies necessary to make such an energy complex a reality, perhaps in the first decade of the 21st century. Such a power generating and fuel production facility would be in concert with improved clean air goals, and the national security and economic advantages of making U.S. power and fuel supplies dependent only on indigenous resources.


Author(s):  
F. S. Bhinder ◽  
Munzer S. Y. Ebaid ◽  
Moh’d Yazid F. Mustafa ◽  
Raj K. Calay ◽  
Mohammed H. Kailani

Large scale electrical power generation faces two serious problems: (i) energy conservation; and (ii) protection of the environment. High temperatures fuel cells have the potential to deal with both problems. The heat rejected by the fuel cell that would otherwise be wasted may be recovered to power a gas turbine in order to improve the energy conversion efficiency as well as power output of the combined fuel cell-gas turbine power plant. The added advantage of this approach would be to reduce thermal loading and the emission of greenhouse gases per MW electrical power generated. Serious research is being carried out worldwide to commercialise the fuel cell nevertheless there is still ample scope for studying the application of high temperature fuel cells in combination with the gas turbine for large scale electrical power generation. This paper presents the results of a parametric study of the fuel cell-gas turbine power plant to generate electricity. The paper should be of considerable interest to the designers and applications engineers working in power generation industry and other public utilities. The authors hope that the paper would lead to a stimulating discussion.


2008 ◽  
Vol 380 ◽  
pp. 43-65 ◽  
Author(s):  
John P. Dismukes ◽  
Lawrence K. Miller ◽  
Andrew Solocha ◽  
John A. Bers

This study addresses past, current and future development of the wind electrical power industry, that began prior to 1890 in Cleveland, Ohio and Askov, Denmark. Overcoming technological, business, societal and political hurdles required approximately 120 years of exploration to establish wind electricity generation as a radical innovation entering the acceleration stage of the industrial technology life cycle. Materials and integrated materials systems featuring mechanical, structural, fluid dynamic, electrical, electronic, and telecommunications functionality developed and introduced over that period have contributed uniquely to current commercial viability of wind turbine electrical power generation. Further growth and maturation is expected to continue to ≈ 2100, corresponding to a life cycle of ≅ 210 years. This finding has profound implications for radical innovation theory and practice, since historical analysis attributes a 50-60 year life cycle for 5 industrial revolutions, and emerging theory anticipates acceleration of radical innovation, as discussed in companion papers in this conference. Rapid growth in installed capacity of large scale wind turbines (>1MW) now positions wind electrical power generation in the Acceleration Stage, characterized by market competition between dominant wind turbine designs and societal acceptance by wind energy communities of practice in Europe, North America and Asia. Technical cost model based learning curve projections of Cost of Electricity (COE) suggest that by 2020 COE from wind will be competitive, without tax incentives, with electricity from conventional fossil and nuclear fuel sources. Capture by wind energy of up to 20% of the world electricity market appears likely by the end of the 21st Century.


2015 ◽  
Vol 193 (3) ◽  
pp. 17-23 ◽  
Author(s):  
Fumihiko Komatsu ◽  
Manabu Tanaka ◽  
Tomoyuki Murakami ◽  
Yoshihiro Okuno

1977 ◽  
Vol 33 (2) ◽  
pp. 212-222 ◽  
Author(s):  
R. W. Hardie ◽  
J. H. Chamberlin

Author(s):  
J R Bolter

Sir Charles Parsons died some three years after the author was born. In this paper the author looks back at the pioneering work of Parsons in the field of power generation. It shows how he was able to increase output of the steam turbine generator from 7.5 kW in 1884 to 50000 kW in 1930 while increasing efficiency from 1.6 to 36 per cent, and relates these achievements to the current state of the art. Blading design, rotor construction and other aspects of turbine engineering are considered. The conclusion is that Parsons and his associates charted the course which manufacturers and utilities throughout the world have continued to follow, although increasingly sophisticated design and analytical methods have succeeded the intuitive approach of Parsons. His constant search for improved efficiency was and is highly relevant to today's concern for the environment. Finally, although it did not become a practical proposition in his lifetime, the paper reviews Parsons' vision of, and continuing interest in, the gas turbine, first mentioned in his 1884 patents.


Sign in / Sign up

Export Citation Format

Share Document