Methane dimerization through ion conductors (β-Al2O3)

1991 ◽  
Vol 48 (1-2) ◽  
pp. 123-125 ◽  
Author(s):  
J KIWI ◽  
K RAVINDRANATHANTHAMPI ◽  
M GRATZEL
RSC Advances ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 3809-3815 ◽  
Author(s):  
Huaibo Yi ◽  
Yun Lv ◽  
Yanhui Wang ◽  
Xue Fang ◽  
Victoria Mattick ◽  
...  

The bulk conductivity of Ca12Al14O33 can be apparently enhanced by Ga-doping on the Al sites.


Author(s):  
Thomas F Fässler ◽  
Stefan Strangmüller ◽  
Henrik Eickkhoff ◽  
Wilhelm Klein ◽  
Gabriele Raudaschl-Sieber ◽  
...  

The increasing demand for a high-performance and low-cost battery technology promotes the search for Li+-conducting materials. Recently, phosphidotetrelates and aluminates were introduced as an innovative class of phosphide-based Li+-conducting materials...


2021 ◽  
Vol 27 (S1) ◽  
pp. 180-181
Author(s):  
David Diercks ◽  
Federico Baiutti ◽  
Francesco Chiabrera ◽  
Alex Morata ◽  
Albert Tarancon

1993 ◽  
Vol 67 (1-2) ◽  
pp. 25-28 ◽  
Author(s):  
A WATANABE ◽  
M DRACHE ◽  
J WIGNACOURT ◽  
P CONFLANT ◽  
J BOIVIN

2006 ◽  
Vol 62 (6) ◽  
pp. 1010-1018 ◽  
Author(s):  
Vladislav A. Blatov ◽  
Gregory D. Ilyushin ◽  
Olga A. Blatova ◽  
Nataly A. Anurova ◽  
Alexej K. Ivanov-Schits ◽  
...  

In terms of the Voronoi–Dirichlet partition of the crystal space, definitions are given for such concepts as `void', `channel' and `migration path' for inorganic structures with three-dimensional networks of chemical bonds. A number of criteria are proposed for selecting significant voids and migration channels for alkali cations Li+–Cs+ based on the average characteristics of the Voronoi–Dirichlet polyhedra for alkali metals in oxygen-containing compounds. A general algorithm to analyze the voids in crystal structures has been developed and implemented in the computer package TOPOS. This approach was used to predict the positions of Li+ and Na+ cations and to analyze their possible migration paths in the solid superionic materials Li3 M 2P3O12 (M = Sc, Fe; LIPHOS) and Na1 + x Zr2Si x P3 − x O12 (NASICON), whose framework structures consist of connected M octahedra and T tetrahedra. Using this approach we determine the most probable places for charge carriers (coordinates of alkali cations) and the dimensionality of their conducting sublattice with high accuracy. The theoretically calculated coordinates of the alkali cations in MT frameworks are found to correlate to within 0.33 Å with experimental data for various phases of NASICON and LIPHOS. The proposed method of computer analysis is universal and suitable for investigating fast-ion conductors with other conducting components.


2012 ◽  
Vol 184 ◽  
pp. 110-115
Author(s):  
X.P. Wang ◽  
J. Hu ◽  
Zhong Zhuang ◽  
Tao Zhang ◽  
Qian Feng Fang

The relaxation and phase transition behaviors of rare-earth ion substituted fast oxide-ion conductors (La1-xRex)2Mo2O9 (Re=Nd, Gd) were investigated by internal friction (IF) measurement in the temperature range 300 K - 950 K. Three different IF peaks (labeled as PL, PH, and PG, respectively) were observed in the rare-earth ion doped La2Mo2O9 samples. Peak PL corresponds to short diffusion processes of oxygen ions among different oxygen vacancy sites. Peak PH is associated with the static/dynamic disorder transition in oxygen ion distribution. Peak PG is a newly discovered peak embodying phase transition-like characteristics and is suggested to be related to order-disorder transition associated with the rearrangement of La/ Re sub-lattice.


Sign in / Sign up

Export Citation Format

Share Document