Adenine nucleotide regulation of particulate guanylate cyclase from rat lung

Author(s):  
Helene Gazzano ◽  
H.Irene Wu ◽  
Scott A. Waldman
1992 ◽  
Vol 283 (3) ◽  
pp. 727-735 ◽  
Author(s):  
L C Katwa ◽  
C D Parker ◽  
J K Dybing ◽  
A A White

Certain nucleotides were found to regulate the binding of the Escherichia coli heat-stable enterotoxin (STa) to its receptor in pig intestinal brush border membranes. ATP and adenine nucleotide analogues inhibited 125I-STa binding, while guanine nucleotide analogues stimulated binding, with maximal effects at 0.5-1.0 mM. The strongest inhibitors were adenosine 5′-[beta gamma-imido]triphosphate (App[NH]p) (36%) and adenosine 5′-[beta-thio]diphosphate (ADP[S]) (41%). Inhibition did not require Mg2+, and was blocked by p-chloromercuribenzenesulphonate (PCMBS). Stimulation of binding required Mg2+, was not prevented by PCMBS and was maximal with GDP[S] (41%). While App[NH]p and MgGDP[S] appeared to be acting at different sites, they also interfered with each other. These nucleotides exerted only inhibitory effects on STa-stimulated guanylate cyclase activity, in contrast with the stimulatory effects of adenine nucleotides on atrial natriuretic peptide (ANP)-stimulated guanylate cyclase. Inhibition by low concentrations of MgApp[NH]p and MgATP was weaker above 0.1 mM, while MgGDP[S] and magnesium guanosine 5′-[gamma-thio]triphosphate (MgGTP[S]) inhibited in a single phase. Inhibition by MgApp[NH]p, at all concentrations, was competitive with the substrate (MgGTP), as was that by MgGDP[S] and MgGTP[S]. Whereas membrane guanylate cyclases usually show positively co-operative kinetics with respect to the substrate, STa-stimulated activity exhibited Michaelis-Menten kinetics with respect to MgGTP. This changed to positive co-operativity when Lubrol PX was the activator, or when the substrate was MnGTP. These results suggest the presence of both a regulatory and a catalytic nucleotide-binding site, which do not interact co-operatively with STa activation.


1995 ◽  
Vol 268 (4) ◽  
pp. L546-L550 ◽  
Author(s):  
J. A. Monaco ◽  
T. Burke-Wolin

Pulmonary hypoxic vasoconstriction appears to have both endothelium-dependent and -independent regulatory pathways. We have previously described a mechanism of guanylate cyclase activation in isolated pulmonary arteries that is smooth muscle contained and oxygen tension dependent. In this study we examine this mechanism, involving H2O2 metabolism by catalase, and its relationship to endothelial-derived nitric oxide in the regulation of pulmonary artery pressure (PAP) by oxygen tension. Using probes selective for these two distinct mechanisms of guanylate cyclase activation, we found in the isolated buffer-perfused rat lung that 100 microM nitro-L-arginine (NLA), an inhibitor of NO formation, increased baseline PAP from 4.8 +/- 0.6 to 6.0 +/- 0.6 mmHg and hypoxic PAP from 6.8 +/- 0.8 to 8.56 +/- 0.6 mmHg. Aminotriazole (AT), an inhibitor of H2O2 metabolism by catalase, also increased PAP from 4.5 +/- 0.9 to 6.1 +/- 2.0 mmHg (P < or = 0.05) and hypoxic PAP from 6.0 +/- 1.7 to 8.7 +/- 2.7 mmHg (P < or = 0.05). Additionally, while NLA did not affect the vasodilation that occurs upon reoxygenation, AT inhibited the immediate response to reoxygenation. In the presence of both NLA and AT, baseline PAP increased from 4.25 +/- 0.8 to 9.9 +/- 0.92 mmHg (P < or = 0.05), but hypoxia did not significantly increase PAP and the reoxygenation response was inhibited. These data suggest that both NO and H2O2-catalase mechanisms contribute to a similar degree to maintain low PAP under normoxic conditions. The removal of either mediator may contribute to hypoxic vasoconstriction.


1997 ◽  
Vol 83 (1) ◽  
pp. 247-252 ◽  
Author(s):  
David R. Jones ◽  
Randy M. Becker ◽  
Steve C. Hoffmann ◽  
John J. Lemasters ◽  
Thomas M. Egan

Jones, David R., Randy M. Becker, Steve C. Hoffmann, John J. Lemasters, and Thomas M. Egan. When does the lung die? K fc, cell viability, and adenine nucleotide changes in the circulation-arrested rat lung. J. Appl. Physiol. 83(1): 247–252, 1997.—Lungs harvested from cadaveric circulation-arrested donors may increase the donor pool for lung transplantation. To determine the degree and time course of ischemia-reperfusion injury, we evaluated the effect of O2 ventilation on capillary permeability [capillary filtration coefficient ( K fc)], cell viability, and total adenine nucleotide (TAN) levels in in situ circulation-arrested rat lungs. K fc increased with increasing postmortem ischemic time ( r = 0.88). Lungs ventilated with O2 1 h postmortem had similar K fc and wet-to-dry ratios as controls. Nonventilated lungs had threefold ( P < 0.05) and sevenfold ( P < 0.0001) increases in K fc at 30 and 60 min postmortem compared with controls. Cell viability decreased in all groups except for 30-min postmortem O2-ventilated lungs. TAN levels decreased with increasing ischemic time, particularly in nonventilated lungs. Loss of adenine nucleotides correlated with increasing K fc values ( r = 0.76). This study indicates that lungs retrieved 1 h postmortem may have normal K fc with preharvest O2 ventilation. The relationship between K fc and TAN suggests that vascular permeability may be related to lung TAN levels.


1978 ◽  
Vol 45 (1) ◽  
pp. 56-59 ◽  
Author(s):  
A. B. Fisher

To study hyperoxic effects on adenine nucleotide content and lactate and pyruvate production by lungs, rats were exposed to oxygen at 1 ATA for 18, 24, or 48 h or to 4 ATA for 1 h. Subsequently, lungs were removed from rats, placed in an isolated-lung apparatus, ventilated with 5% CO2 in O2, and perfused with Krebs-Ringer bicarbonate medium containing 5.5 mM glucose and 4% bovine serum albumin. Uptake of serotonin from the perfusate was depressed 28% in rats exposed to hyperbaric oxygen compared with unexposed controls. Concentrations of adenine nucleotides, the ATP/ADP ratio, and the “energy charge” were similar in control and oxygen-exposed rats. The production of lactate and the ratio of lactate to pyruvate production were significantly higher in rats exposed to oxygen for 48 h compared with other exposure regimens. Comparison of these results with those previously reported for serotonin uptake in lungs after hyperoxic exposure indicates that serotonin clearance is depressed prior to alteration of the energy status of the rat lung.


1996 ◽  
Vol 62 (5) ◽  
pp. 1448-1453 ◽  
Author(s):  
Andrea M. D'Armini ◽  
John J. Lemasters ◽  
Thomas M. Egan

1990 ◽  
Vol 1052 (1) ◽  
pp. 159-165 ◽  
Author(s):  
Chung-Ho Chang ◽  
Klaus P. Kohse ◽  
Bing Chang ◽  
Masato Hirata ◽  
Bin Jiang ◽  
...  

2012 ◽  
Vol 58 (1) ◽  
pp. 32-42 ◽  
Author(s):  
N.V. Pyatakova ◽  
I.S. Severina

The influence of ambroxol - a mucolytic drug - on the activity of human platelet soluble guanylate cyclase and rat lung soluble guanylate cyclase and activation of both enzymes by NO-donors (sodium nitroprusside and Sin-1) were investigated. Ambroxol in the concentration range from 0.1 to 10 μM had no effect on the basal activity of both enzymes. Ambroxol inhibited in a concentration-dependent manner the sodium nitroprusside-induced human platelet soluble guanylate cyclase and rat lung soluble guanylate cyclase with the IC50 values 3.9 and 2.1 μM, respectively. Ambroxol did not influence the stimulation of both enzymes by protoporphyrin IX.The influence of artemisinin - an antimalarial drug - on human platelet soluble guanylate cyclase activity and the enzyme activation by NO-donors were investigated. Artemisinin (0.1-100 μM) had no effect on the basal activity of the enzyme. Artemisinin inhibited in a concentration-dependent manner the sodium nitroprusside-induced activation of human platelet guanylate cyclase with an IC50 value 5.6 μM. Artemisinin (10 μM) also inhibited (by 71±4.0%) the activation of the enzyme by thiol-dependent NO-donor the derivative of furoxan, 3,4-dicyano-1,2,5-oxadiazolo-2-oxide (10 μM), but did not influence the stimulation of soluble guanylate cyclase by protoporphyrin IX. It was concluded that the sygnalling system NO-soluble guanylate cyclase-cGMP is involved in the molecular mechanism of the therapeutic action of ambroxol and artemisinin.


2000 ◽  
Vol 82 ◽  
pp. 145
Author(s):  
Shiwen Luo ◽  
Masako Takano ◽  
Zhong-ping Lai ◽  
Takeo Asakawa
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document