hyperoxic exposure
Recently Published Documents


TOTAL DOCUMENTS

119
(FIVE YEARS 9)

H-INDEX

23
(FIVE YEARS 0)

2021 ◽  
pp. 489-499
Author(s):  
Qëndrim Thaçi ◽  
Shkëlzen Reçica ◽  
Islam Kryeziu ◽  
Vadim Mitrokhin ◽  
Andre Kamkin ◽  
...  

The use of oxygen therapy (high doses of oxygen - hyperoxia) in the treatment of premature infants results in their survival. However, it also results in a high incidence of chronic lung disease known as bronchopulmonary dysplasia, a disease in which airway hyper-responsiveness and pulmonary hypertension are well known as consequences. In our previous studies, we have shown that hyperoxia causes airway hyper-reactivity, characterized by an increased constrictive and impaired airway smooth muscle relaxation due to a reduced release of relaxant molecules such as nitric oxide, measured under in vivo and in vitro conditions (extra- and intrapulmonary) airways. In addition, the relaxation pathway of the vasoactive intestinal peptide (VIP) and/or pituitary adenylate cyclase activating peptide (PACAP) is another part of this system that plays an important role in the airway caliber. Peptide, which activates VIP cyclase and pituitary adenylate cyclase, has prolonged airway smooth muscle activity. It has long been known that VIP inhibits airway smooth muscle cell proliferation in a mouse model of asthma, but there is no data about its role in the regulation of airway and tracheal smooth muscle contractility during hyperoxic exposure of preterm newborns.


Redox Biology ◽  
2021 ◽  
pp. 102091
Author(s):  
Alejandro Scaffa ◽  
Hongwei Yao ◽  
Nathalie Oulhen ◽  
Joselynn Wallace ◽  
Abigail L. Peterson ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Chih-Hao Shen ◽  
Jr-Yu Lin ◽  
Cheng-Yo Lu ◽  
Sung-Sen Yang ◽  
Chung-Kan Peng ◽  
...  

Abstract Background Hyperoxia downregulates the tight junction (TJ) proteins of the alveolar epithelium and leads to barrier dysfunction. Previous study has showed that STE20/SPS1-related proline/alanine-rich kinase (SPAK) interferes with the intestinal barrier function in mice. The aim of the present study is to explore the association between SPAK and barrier function in the alveolar epithelium after hyperoxic exposure. Methods Hyperoxic acute lung injury (HALI) was induced by exposing mice to > 99% oxygen for 64 h. The mice were randomly allotted into four groups comprising two control groups and two hyperoxic groups with and without SPAK knockout. Mouse alveolar MLE-12 cells were cultured in control and hyperoxic conditions with or without SPAK knockdown. Transepithelial electric resistance and transwell monolayer permeability were measured for each group. In-cell western assay was used to screen the possible mechanism of p-SPAK being induced by hyperoxia. Results Compared with the control group, SPAK knockout mice had a lower protein level in the bronchoalveolar lavage fluid in HALI, which was correlated with a lower extent of TJ disruption according to transmission electron microscopy. Hyperoxia down-regulated claudin-18 in the alveolar epithelium, which was alleviated in SPAK knockout mice. In MLE-12 cells, hyperoxia up-regulated phosphorylated-SPAK by reactive oxygen species (ROS), which was inhibited by indomethacin. Compared with the control group, SPAK knockdown MLE-12 cells had higher transepithelial electrical resistance and lower transwell monolayer permeability after hyperoxic exposure. The expression of claudin-18 was suppressed by hyperoxia, and down-regulation of SPAK restored the expression of claudin-18. The process of SPAK suppressing the expression of claudin-18 and impairing the barrier function was mediated by p38 mitogen-activated protein kinase (MAPK). Conclusions Hyperoxia up-regulates the SPAK-p38 MAPK signal pathway by ROS, which disrupts the TJ of the alveolar epithelium by suppressing the expression of claudin-18. The down-regulation of SPAK attenuates this process and protects the alveolar epithelium against the barrier dysfunction induced by hyperoxia.


2020 ◽  
Author(s):  
Chih-Hao Shen ◽  
Jr-Yu Lin ◽  
Cheng-Yo Lu ◽  
Sung-Sen Yang ◽  
Chung-Kan Peng ◽  
...  

Abstract Background: Hyperoxia downregulates the tight junction (TJ) proteins of the alveolar epithelium and leads to barrier dysfunction. Previous study has showed that STE20/SPS1-related proline/alanine-rich kinase (SPAK) interferes with the intestinal barrier function in mice. The aim of the present study is to explore the association between SPAK and barrier function in the alveolar epithelium after hyperoxic exposure. Methods: Hyperoxic acute lung injury (HALI) was induced by exposing mice to >99% oxygen for 64 hours. The mice were randomly allotted into four groups comprising two control groups and two hyperoxic groups with and without SPAK knockout. Mouse alveolar MLE-12 cells were cultured in control and hyperoxic conditions with or without SPAK knockdown. Transepithelial electric resistance and transwell monolayer permeability were measured for each group. In-cell western assay was used to screen the possible mechanism of p-SPAK being induced by hyperoxia.Results: Compared with the control group, SPAK knockout mice had a lower protein level in the bronchoalveolar lavage fluid in HALI, which was correlated with a lower extent of TJ disruption according to transmission electron microscopy. Hyperoxia down-regulated claudin-18 in the alveolar epithelium, which was alleviated in SPAK knockout mice. In MLE-12 cells, hyperoxia up-regulated phosphorylated-SPAK by reactive oxygen species (ROS), which was inhibited by indomethacin. Compared with the control group, SPAK knockdown MLE-12 cells had higher transepithelial electrical resistance and lower transwell monolayer permeability after hyperoxic exposure. The expression of claudin-18 was suppressed by hyperoxia, and down-regulation of SPAK restored the expression of claudin-18. The process of SPAK suppressing the expression of claudin-18 and impairing the barrier function was mediated by p38 mitogen-activated protein kinase (MAPK).Conclusions: Hyperoxia up-regulates the SPAK-p38 MAPK signal pathway by ROS, which disrupts the TJ of the alveolar epithelium by suppressing the expression of claudin-18. Down-regulation of SPAK attenuates this process and protects the alveolar epithelium against the barrier dysfunction induced by hyperoxia.


Metabolites ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 340
Author(s):  
Abigail L. Peterson ◽  
Jennifer F. Carr ◽  
Xiangming Ji ◽  
Phyllis A. Dennery ◽  
Hongwei Yao

Treatments with supplemental oxygen in premature infants can impair lung development, leading to bronchopulmonary dysplasia (BPD). Although a stage-specific alteration of lung lipidome occurs during postnatal lung development, whether neonatal hyperoxia, a known mediator of BPD in rodent models, changes lipid profiles in mouse lungs is still to be elucidated. To answer this question, newborn mice were exposed to hyperoxia for 3 days and allowed to recover in normoxia until postnatal day (pnd) 7 and pnd14, time-points spanning the peak stage of alveologenesis. A total of 2263 lung lipid species were detected by liquid chromatography–mass spectrometry, covering 5 lipid categories and 18 lipid subclasses. The most commonly identified lipid species were glycerophospholipids, followed by sphingolipids and glycerolipids. In normoxic conditions, certain glycerophospholipid and glycerolipid species augmented at pnd14 compared to pnd7. At pnd7, hyperoxia generally increased glycerophospholipid, sphingolipid, and glycerolipid species. Hyperoxia increased NADPH, acetyl CoA, and citrate acid but reduced carnitine and acyl carnitine. Hyperoxia increased oxidized glutathione but reduced catalase. These changes were not apparent at pnd14. Hyperoxia reduced docosahexaenoic acid and arachidonic acid at pnd14 but not at pnd7. Altogether, the lung lipidome changes throughout alveolarization. Neonatal hyperoxia alters the lung lipidome, which may contribute to alveolar simplification and dysregulated vascular development.


2020 ◽  
Vol 47 (1) ◽  
pp. 197-202
Author(s):  
Ronja Hesthammer ◽  
◽  
Stian Dahle ◽  
Jon Peder Storesund ◽  
Torunn Eide ◽  
...  

The fraction of nitric oxide in exhaled gas (FENO) is decreased after exposure to hyperoxia in vivo, although the mechanisms for this decrease is not clear. A key co-factor for nitric oxide synthase (NOS), tetrahydrobiopterin (BH4), has been shown to be oxidized in vitro when exposed to hyperoxia. We hypothesized that the decrease of FENO is due to decreased enzymatic generation of NO due to oxidation of BH4. The present study was performed to investigate the relationship between levels of FENO and plasma BH4 following hyperoxic exposure in humans. Two groups of healthy subjects were exposed to 100% oxygen for 90 minutes. FENO was measured before and 10 minutes (n = 13) or 60 minutes (n = 14) after the exposure. Blood samples were collected at the same time points for quantification of biopterin levels (BH4, BH2 and B) using LC-MS/MS. Each subject was his or her own control, breathing air for 90 minutes on a separate day. Hyperoxia resulted in a 28.6 % decrease in FENO 10 minutes after exposure (p < 0.001), confirming previous findings. Moreover, hyperoxia also caused a 14.2% decrease in plasma BH4 (p = 0.012). No significant differences were observed in the group measured 60 minutes after exposure. No significant correlation was found between the changes in FENO and BH4 after the hyperoxic exposure (r = 0.052, p = 0.795), this might be due to the recovery of BH4 being faster than the recovery of FENO.


Circulation ◽  
2019 ◽  
Vol 140 (Suppl_2) ◽  
Author(s):  
Shaun K McGovern ◽  
Kemarut Laothamatas ◽  
Abhishek Bhardwaj ◽  
David G Buckler ◽  
Benjamin S Abella

Introduction: Arterial hyperoxia at 6 h following resuscitation from out-of-hospital cardiac arrest (OHCA) may be associated with worsened survival and neurologic outcome. While global resuscitation guidelines call for prompt weaning of inhaled oxygen fraction (FiO2) following return of spontaneous circulation, with titration to oxygen saturation (SaO2) >92%, the burden of hyperoxia (both FiO2 and duration) among OHCA patients in the emergency department (ED) and critical care setting is unknown. Objectives: We sought to characterize oxygen weaning behavior in a cohort of resuscitated and mechanically ventilated OHCA patients from two hospitals, with “hyperoxic exposure burden” defined as cumulative treatment hours with FiO2>0.6. We hypothesized that the majority of these patients receive at least 6 h of hyperoxic exposure despite concomitant SaO2>92% during and after weaning. Methods: A retrospective study of post-arrest care was performed at two academic hospitals from 1/2018-12/2018; both hospitals have well-developed post-arrest care protocols that include oxygen weaning instructions. Consecutive non-traumatic, adult (age>17 y) OHCA patients treated in the emergency department that achieved sustained ROSC and received mechanical ventilation were included. Demographic data, as well as data on FiO2, SaO2 and arterial blood gas results, were collected for the first 24 h of post-arrest care. Results: 70 adult OHCA patients were included. Mean age was 61 y (SD 16.4), 51% were male, and 20% had initial shockable arrest rhythms. Survival to discharge was 21%. Median ED patient care time before ICU transfer was 2.7 h (IQR: 1.9-4.0). FiO2>=0.6 was administered to 52% of the cohort for at least 6 h; the median duration of hyperoxic exposure burden was 8.7 h (IQR: 3.9-15.0) with a wide range from 0.6-92 h. Among all patients with 6 h or more with FiO2>=0.6, median partial pressure of arterial oxygen was 136 mm Hg (IQR: 94-301) as measured during this period. Conclusions: Most resuscitated OHCA patients received substantial exposure to hyperoxia, and the timing of oxygen weaning was highly variable. Additional clinical investigation is required to understand the barriers to rapid weaning and to test the effect of improved weaning on clinical outcomes.


2019 ◽  
pp. 159-169
Author(s):  
Ronja Hesthammer ◽  
◽  
Torunn Eide ◽  
Eimar Thorsen ◽  
Asbjørn M. Svardal ◽  
...  

Purpose: Nitric oxide (NO) has been shown to protect against bubble formation and the risk of decompression sickness. We hypothesize that oxidation of tetrahydrobiopterin (BH4) leads to a decreased production of NO during simulated diving. Methods: Human umbilical vein endothelial cells (HUVEC) were exposed to hyperoxia or simulated diving for 24 hours. The levels of biopterins (BH4, BH2 and B) were determined by LC-MS/MS, and the production of NO by monitoring the conversion of L-arginine to L-citrulline. Results: Exposure to hyperoxia decreased BH4 in a dose-dependent manner; by 48 ± 15% following exposure to 40 kPa O2 (P < 0.001 vs. control at 20 kPa O2), and 70 ± 16% following exposure to 60 kPa O2. Exposure to 40 kPa O2 decreased NO production by 25 ± 9%, but there was no further decrease when increasing oxygen exposure to 60 kPa (25 ± 10%). No additional effects of simulated diving were observed, indicating no additive or synergistic effects of hyperbaria and hyperoxia on the BH4 level or NO generation. Conclusion: NO generation in intact human endothelial cells was decreased by simulated diving, as well as by hyperoxic exposure, while BH4 levels seem to be affected only by hyperoxia. Hence, the results suggest that BH4 is not the sole determinant of NO generation in HUVEC.


Sign in / Sign up

Export Citation Format

Share Document