scholarly journals Nucleotide regulation of heat-stable enterotoxin receptor binding and of guanylate cyclase activation

1992 ◽  
Vol 283 (3) ◽  
pp. 727-735 ◽  
Author(s):  
L C Katwa ◽  
C D Parker ◽  
J K Dybing ◽  
A A White

Certain nucleotides were found to regulate the binding of the Escherichia coli heat-stable enterotoxin (STa) to its receptor in pig intestinal brush border membranes. ATP and adenine nucleotide analogues inhibited 125I-STa binding, while guanine nucleotide analogues stimulated binding, with maximal effects at 0.5-1.0 mM. The strongest inhibitors were adenosine 5′-[beta gamma-imido]triphosphate (App[NH]p) (36%) and adenosine 5′-[beta-thio]diphosphate (ADP[S]) (41%). Inhibition did not require Mg2+, and was blocked by p-chloromercuribenzenesulphonate (PCMBS). Stimulation of binding required Mg2+, was not prevented by PCMBS and was maximal with GDP[S] (41%). While App[NH]p and MgGDP[S] appeared to be acting at different sites, they also interfered with each other. These nucleotides exerted only inhibitory effects on STa-stimulated guanylate cyclase activity, in contrast with the stimulatory effects of adenine nucleotides on atrial natriuretic peptide (ANP)-stimulated guanylate cyclase. Inhibition by low concentrations of MgApp[NH]p and MgATP was weaker above 0.1 mM, while MgGDP[S] and magnesium guanosine 5′-[gamma-thio]triphosphate (MgGTP[S]) inhibited in a single phase. Inhibition by MgApp[NH]p, at all concentrations, was competitive with the substrate (MgGTP), as was that by MgGDP[S] and MgGTP[S]. Whereas membrane guanylate cyclases usually show positively co-operative kinetics with respect to the substrate, STa-stimulated activity exhibited Michaelis-Menten kinetics with respect to MgGTP. This changed to positive co-operativity when Lubrol PX was the activator, or when the substrate was MnGTP. These results suggest the presence of both a regulatory and a catalytic nucleotide-binding site, which do not interact co-operatively with STa activation.

1974 ◽  
Vol 140 (3) ◽  
pp. 413-422 ◽  
Author(s):  
Terry L. Spencer ◽  
Fyfe L. Bygrave

1. The mechanism of adenine nucleotide translocation in mitochondria isolated from rat liver was further examined by using the local anaesthetics procaine, butacaine, nupercaine and tetracaine as perturbators of lipid–protein interactions. Each of these compounds inhibited translocation of ADP and of ATP; butacaine was the most effective with 50% inhibition occurring at 30μm for 200μm-ATP and at 10μm for 200μm-ADP. The degree of inhibition by butacaine of both adenine nucleotides was dependent on the concentration of adenine nucleotide present; with low concentrations of adenine nucleotide, low concentrations of butacaine-stimulated translocation, but at high concentrations (greater than 50μm) low concentrations of butacaine inhibited translocation. Butacaine increased the affinity of the translocase for ATP to a value which approached that of ADP. 2. Higher concentrations of nupercaine and of tetracaine were required to inhibit translocation of both nucleotides; 50% inhibition of ATP translocation occurred at concentrations of 0.5mm and 0.8mm of these compounds respectively. The pattern of inhibition of ADP translocation by nupercaine and tetracaine was more complex than that of ATP; at very low concentrations (less than 250μm) inhibition ensued, followed by a return to almost original rates at 1mm. At higher concentrations inhibition of ADP translocation resulted. 3. That portion of ATP translocation stimulated by Ca2+ was preferentially inhibited by each of the local anaesthetics tested. In contrast, inhibition by the anaesthetics of ADP translocation was prevented by low concentrations of Ca2+. 4. The data provide further support for our hypothesis that lipid–protein interactions are important determinants in the activity of the adenine nucleotide translocase in mitochondria.


1999 ◽  
Vol 276 (5) ◽  
pp. H1535-H1542 ◽  
Author(s):  
Sachin A. Gupte ◽  
Tasneem Rupawalla ◽  
Kamal M. Mohazzab-H. ◽  
Michael S. Wolin

We have previously reported that inhibition of Cu/Zn superoxide dismutase (SOD) in endothelium-removed bovine pulmonary arteries (BPA) attenuates nitrovasodilator-elicited relaxation and that a NADH oxidase linked to the redox status of cytosolic NADH is the major detectable source of superoxide ([Formula: see text]) production in this tissue. In the present study, we investigated whether NADH oxidase-derived[Formula: see text] participated in inhibition of nitrovasodilator-elicited relaxation and soluble guanylate cyclase (sGC) stimulation. Lactate (10 mM) and pyruvate (10 mM) were employed to increase and decrease, respectively, NADH-dependent[Formula: see text] production in the BPA presumably by modulating cytosolic NAD(H) through the lactate dehydrogenase reaction. A 30-min pretreatment with 10 mM diethyldithiocarbamate (DETCA) was used to inhibit Cu/Zn SOD, and S-nitroso- N-acetylpenicillamine (SNAP) was employed as a source of nitric oxide (NO). Lactate or pyruvate did not alter relaxation to NO. However, when the response to NO was inhibited by DETCA, lactate potentiated and pyruvate reduced the inhibitory effects of DETCA. SOD attenuated the inhibitory effects of DETCA plus lactate. In the presence of 10 μM SNAP, the activity of sGC in a BPA homogenate preparation (which was reconcentrated to approximate tissue conditions) was not altered by SOD. However, NADH (0.1 mM) decreased sGC activity by 70%, and this effect of NADH was attenuated in the presence of SOD. Thus cytosolic NADH redox and Cu/Zn SOD activity have important roles in controlling the inhibitory effects of [Formula: see text] derived from NADH oxidase on sGC activity and cGMP-mediated relaxation to nitrovasodilators in BPA.


1999 ◽  
Vol 277 (6) ◽  
pp. L1124-L1132 ◽  
Author(s):  
Sachin A. Gupte ◽  
Tasneem Rupawalla ◽  
Donald Phillibert ◽  
Michael S. Wolin

The hemoprotein oxidant ferricyanide (FeCN) converts the iron of the heme on soluble guanylate cyclase (sGC) from Fe2+ to Fe3+, which prevents nitric oxide (NO) from binding the heme and stimulating sGC activity. This study uses FeCN to examine whether modulation of the redox status of the heme on sGC influences the relaxation of endothelium-removed bovine pulmonary arteries (BPA) to NO. Pretreatment of the homogenate of BPA with 50 μM FeCN resulted in a loss of stimulation of sGC activity by the NO donor 10 μM S-nitroso- N-acetylpenicillamine (SNAP). In the FeCN-treated homogenate reconcentrated to the enzyme levels in BPA, 100 μM NADPH restored NO stimulation of sGC, and this effect of NADPH was prevented by an inhibitor of flavoprotein electron transport, 1 μM diphenyliodonium (DPI). In BPA the relaxation to SNAP was not altered by FeCN, inhibitors of NADPH generation by the pentose phosphate pathway [250 μM 6-aminonicotinamide (6-AN) and 100 μM epiandrosterone (Epi)], or 1 μM DPI. However, the combination of FeCN with 6-AN, Epi, or DPI inhibited ( P < 0.05) relaxation to SNAP without significantly altering the relaxation of BPA to forskolin. The inhibitory effects of 1 μM 1 H-[1,2,4]oxadiazolo[4,3- a]quinoxalin-1-one (a probe that appears to convert NO-heme of sGC to its Fe3+-heme form) on relaxation to SNAP were also enhanced by DPI. These observations suggest that a flavoprotein containing NADPH oxidoreductase may influence cGMP-mediated relaxation of BPA to NO by maintaining the heme of sGC in its Fe2+ oxidation state.


1989 ◽  
Vol 61 (02) ◽  
pp. 254-258 ◽  
Author(s):  
Margaret L Rand ◽  
Peter L Gross ◽  
Donna M Jakowec ◽  
Marian A Packham ◽  
J Fraser Mustard

SummaryEthanol, at physiologically tolerable concentrations, inhibits platelet responses to low concentrations of collagen or thrombin, but does not inhibit responses of washed rabbit platelets stimulated with high concentrations of ADP, collagen, or thrombin. However, when platelet responses to high concentrations of collagen or thrombin had been partially inhibited by prostacyclin (PGI2), ethanol had additional inhibitory effects on aggregation and secretion. These effects were also observed with aspirin- treated platelets stimulated with thrombin. Ethanol had no further inhibitory effect on aggregation of platelets stimulated with ADP, or the combination of ADP and epinephrine. Thus, the inhibitory effects of ethanol on platelet responses in the presence of PGI2 were very similar to its inhibitory effects in the absence of PGI2, when platelets were stimulated with lower concentrations of collagen or thrombin. Ethanol did not appear to exert its inhibitory effects by increasing cyclic AMP above basal levels and the additional inhibitory effects of ethanol in the presence of PGI2 did not appear to be brought about by further increases in platelet cyclic AMP levels.


1980 ◽  
Vol 43 (02) ◽  
pp. 099-103 ◽  
Author(s):  
J M Whaun ◽  
P Lievaart ◽  

SummaryBlood from normal full term infants, mothers and normal adults was collected in citrate. Citrated platelet-rich plasma was prelabelled with 3H-adenine and reacted with release inducers, collagen and adrenaline. Adenine nucleotide metabolism, total adenine nucleotide levels and changes in sizes of these pools were determined in platelets from these three groups of subjects.At rest, the platelet of the newborn infant, compared to that of the mother and normal adult, possessed similar amounts of adenosine triphosphate (ATP), 4.6 ± 0.2 (SD), 5.0 ± 1.1, 4.9 ± 0.6 µmoles ATP/1011 platelets respectively, and adenosine diphosphate (ADP), 2.4 ± 0.7, 2.8 ± 0.6, 3.0 ± 0.3 umoles ADP/1011 platelets respectively. However the marked elevation of specific radioactivity of ADP and ATP in these resting platelets indicated the platelet of the neonate has decreased adenine nucleotide stores.In addition to these decreased stores of adenine nucleotides, infant platelets showed significantly impaired release of ADP and ATP on exposure to collagen. The release of ADP in infants, mothers, and other adults was 0.9 ± 0.5 (SD), 1.5 ± 0.5, 1.5 ± 0.1 umoles/1011 platelets respectively; that of ATP was 0.6 ± 0.3, 1.0 ± 0.1,1.3 ± 0.2 µmoles/1011 platelets respectively. With collagen-induced release, platelets of newborn infants compared to those of other subjects showed only slight increased specific radioactivities of adenine nucleotides over basal levels. The content of metabolic hypoxanthine, a breakdown product of adenine nucleotides, increased in both platelets and plasma in all subjects studied.In contrast, with adrenaline as release inducer, the platelets of the newborn infant showed no adenine nucleotide release, no change in total ATP and level of radioactive hypoxanthine, and minimal change in total ADP. The reason for this decreased adrenaline reactivity of infant platelets compared to reactivity of adult platelets is unknown.Infant platelets may have different membranes, with resulting differences in regulation of cellular processes, or alternatively, may be refractory to catecholamines because of elevated levels of circulating catecholamines in the newborn period.


2012 ◽  
Vol 2012 ◽  
pp. 1-4 ◽  
Author(s):  
G. Kocic ◽  
J. Nikolic ◽  
T. Jevtovic-Stoimenov ◽  
D. Sokolovic ◽  
H. Kocic ◽  
...  

L-arginine is conditionally essetcial amino acid, required for normal cell growth, protein synthesis, ammonia detoxification, tissue growth and general performance, proposed in the treatment of men sterility and prevention of male impotence. The aim of the present paper was to estimate the activity of the enzymes of adenine nucleotide metabolism:5′-nucleotidase (5′-NU), adenosine deaminase (ADA), AMP deaminase, and xanthine oxidase (XO), during dietary intake of L-arginine for a period of four weeks of male Wistar rats. Adenosine concentration in tissues is maintained by the relative activities of the adenosine-producing enzyme,5′-NU and the adenosine-degrading enzyme-ADA adenosine deaminase. Dietary L-arginine intake directed adenine nucleotide metabolism in liver, kidney, and testis tissue toward the activation of adenosine production, by increased5′-NU activity and decreased ADA activity. Stimulation of adenosine accumulation could be of importance in mediating arginine antiatherosclerotic, vasoactive, immunomodulatory, and antioxidant effects. Assuming that the XO activity reflects the rate of purine catabolism in the cell, while the activity of AMP deaminase is of importance in ATP regeneration, reduced activity of XO, together with the increased AMP-deaminase activity, may suggest that adenine nucleotides are presumably directed to the ATP regenerating process during dietary L-arginine intake.


1987 ◽  
Vol 36 (3) ◽  
pp. 377-380 ◽  
Author(s):  
P. Petit ◽  
M. Manteghetti ◽  
R. Puech ◽  
M.M. Loubatieres-Mariani

Sign in / Sign up

Export Citation Format

Share Document