Factors affecting nitrate leaching from sewage sludges applied to a sandy soil in arable agriculture

1996 ◽  
Vol 58 (2-3) ◽  
pp. 171-185 ◽  
Author(s):  
M.A. Shepherd
2016 ◽  
Vol 37 (6) ◽  
pp. 3997 ◽  
Author(s):  
Thadeu Rodrigues de Melo ◽  
Tiago Santos Telles ◽  
Walquiria Silva Machado ◽  
João Tavares Filho

Vinasse is a potassium-rich waste generated in large amounts by the ethanol production that, applied in the soil, can promote changes in water dispersible clay and in its physical quality. The aim of this study was to evaluate the clay dispersion of Oxisols after vinasse application and correlate it with some chemical attributes. Samples were collected in two Oxisols (155 and 471 g of clay kg-1), put in pots, received dosages of vinasse (0, 50, 100, 150 and 200 m3 ha-1) and remained incubated during 120 days. Phosphorous, organic carbon, pH H2O, pH KCl, pH CaCl2, Al3+, H+Al3+, Ca2+, Mg2+, K+, Na+, Delta pH and the proportion between monovalent and bivalent cations have been evaluated and correlated with the clay flocculation degree. Vinasse changed almost all chemical variables in both soils and increased the flocculation in the sandy soil, but did not change the clayey one. Delta pH, Mg2+ and K+ significantly correlated with the flocculation degree in the sandy soil. It is possible to conclude that the dispersive effect of K+ added by vinasse are irrelevant, considering the flocculant effect caused by the increment in Mg2+ and Delta pH after vinasse application.


2021 ◽  
Author(s):  
Zahid Hussain ◽  
Cheng Tang ◽  
Muhammad Irshad ◽  
Riaz A. Khattak ◽  
Chen Yao ◽  
...  

Abstract Nitrate (NO3) leaching from soils results in lower soil fertility, reduced crop productivity and groundwater pollution. The present study determined NO3 leaching from bentonite [0, 2 and 4% (m/m)] treated sandy soil, under three N sources (calcium nitrate [Ca(NO3)2], ammonium chloride [NH4Cl], urea [CO(NH2)2] @ 300 kg N ha-1) with a leaching fraction of 0.3-0.4. Bentonite markedly reduced NO3 release in leachate, while 4% bentonite retained higher NO3 in soil. The NO3 leaching varied with N sources as Ca(NO3)2>NH4Cl>(CO(NH2)2. This study indicated that soil amendment with bentonite could efficiently mitigate NO3 leaching from soil and hence prevent N fertilizer losses and groundwater pollution.


2003 ◽  
Vol 32 (2) ◽  
pp. 599-606 ◽  
Author(s):  
J. Nyamangara ◽  
L. F. Bergström ◽  
M. I. Piha ◽  
K. E. Giller

2012 ◽  
Vol 28 (4) ◽  
pp. 478-487 ◽  
Author(s):  
E. M. Hansen ◽  
J. Eriksen ◽  
K. Søegaard ◽  
K. Kristensen
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document