scholarly journals Hemagglutinating encephalomyelitis virus attaches to N-acetyl-9-O-acetylneuraminic acid-containing receptors on erythrocytes: comparison with bovine coronavirus and influenza C virus

1990 ◽  
Vol 16 (2) ◽  
pp. 185-194 ◽  
Author(s):  
Beate Schultze ◽  
Hans-Jürgen Gross ◽  
Reinhard Brossmer ◽  
Hans-Dieter Klenk ◽  
Georg Herrler
1999 ◽  
Vol 73 (5) ◽  
pp. 3737-3743 ◽  
Author(s):  
Alfred Klausegger ◽  
Birgit Strobl ◽  
Gerhard Regl ◽  
Alexandra Kaser ◽  
Willem Luytjes ◽  
...  

ABSTRACT We have characterized the hemagglutinin-esterase (HE) of puffinosis virus (PV), a coronavirus closely related to mouse hepatitis virus (MHV). Analysis of the cloned gene revealed approximately 85% sequence identity to HE proteins of MHV and approximately 60% identity to the corresponding esterase of bovine coronavirus. The HE protein exhibited acetylesterase activity with synthetic substratesp-nitrophenyl acetate, α-naphthyl acetate, and 4-methylumbelliferyl acetate. In contrast to other viral esterases, no activity was detectable with natural substrates containing 9-O-acetylated sialic acids. Furthermore, PV esterase was unable to remove influenza C virus receptors from human erythrocytes, indicating a substrate specificity different from HEs of influenza C virus and bovine coronavirus. Solid-phase binding assays revealed that purified PV was unable to bind to sialic acid-containing glycoconjugates like bovine submaxillary mucin, mouse α1macroglobulin or bovine brain extract. Because of the close relationship to MHV, possible implications on the substrate specificity of MHV esterases are suggested.


2006 ◽  
Vol 80 (14) ◽  
pp. 7270-7274 ◽  
Author(s):  
Leen Vijgen ◽  
Els Keyaerts ◽  
Philippe Lemey ◽  
Piet Maes ◽  
Kristien Van Reeth ◽  
...  

ABSTRACT The close genetic and antigenic relatedness among the group 2 coronaviruses human coronavirus OC43 (HCoV-OC43), bovine coronavirus (BCoV), and porcine hemagglutinating encephalomyelitis virus (PHEV) suggests that these three viruses with different host specificities diverged fairly recently. In this study, we determined the complete genomic sequence of PHEV (strain PHEV-VW572), revealing the presence of a truncated group 2-specific ns2 gene in PHEV in comparison to other group 2 coronaviruses. Using a relaxed molecular clock approach, we reconstructed the evolutionary relationships between PHEV, BCoV, and HCoV-OC43 in real-time units, which indicated relatively recent common ancestors for these species-specific coronaviruses.


1991 ◽  
Vol 273 (2) ◽  
pp. 435-441 ◽  
Author(s):  
A Garcia-Sastre ◽  
E Villar ◽  
J C Manuguerra ◽  
C Hannoun ◽  
J A Cabezas

Influenza C virus (strain C/Johannesburg/1/66) was grown, harvested, purified and used as source for the enzyme O-acetylesterase (N-acyl-O-acetylneuraminate O-acetylhydrolase; EC 3.1.1.53). This activity was studied and characterized with regard to some new substrates. The pH optimum of the enzyme is around 7.6, its stability at different pH values shows a result similar to that of the pH optimum, and its activity is well maintained in the pH range from 7.0 to 8.5 (all these tests were performed with 4-nitrophenyl acetate as substrate). Remarkable differences were found in the values of both Km and Vmax, with the synthetic substrates 4-nitrophenyl acetate, 2-nitrophenyl acetate, 4-methylumbelliferyl acetate, 1-naphthyl acetate and fluorescein diacetate. The use of 4-nitrophenyl acetate, 4-methylumbelliferyl acetate or 1-naphthyl acetate as substrate seems to be convenient for routine work, but it is better to carry out the measurements in parallel with those on bovine submandibular gland mucin (the latter is a natural and commercially available substrate). It was found that 4-acetoxybenzoic acid, as well as the methyl ester of 2-acetoxybenzoic acid, but not 2-acetoxybenzoic acid itself, are cleaved by this enzyme. Triacetin, di-O-acetyladenosine, tri-O-acetyladenosine, and di-O-acetyl-N-acetyladenosine phosphate, hitherto unreported as substrates for this viral esterase, are hydrolysed at different rates by this enzyme. We conclude that the O-acetylesterase from influenza C virus has a broad specificity towards both synthetic and natural non-sialic acid-containing substrates. Zn2+, Mn2+ and Pb2+ (as their chloride salts), N-acetylneuraminic acid, 4-methyl-umbelliferone and 2-acetoxybenzoic acid (acetylsalicylic acid) did not act as inhibitors.


Sign in / Sign up

Export Citation Format

Share Document