Preliminary characteristics of some bottom sediments of the Baltic Sea

Author(s):  
Angelina E. Shatalova ◽  
Uriy A. Kublitsky ◽  
Dmitry A. Subetto ◽  
Anna V. Ludikova ◽  
Alar Rosentau ◽  
...  

The study of paleogeography of lakes is an actual and important direction in modern science. As part of the study of lakes in the North-West of the Karelian Isthmus, this analysis will establish the dynamics of salinity of objects, which will allow to reconstruct changes in the level of the Baltic Sea in the Holocene.


2019 ◽  
Vol 59 (5) ◽  
pp. 888-890
Author(s):  
A. V. Krek ◽  
V. T. Paka ◽  
E. V. Krek ◽  
E. E. Ezhova ◽  
D. V. Dorokhov ◽  
...  

The 44th cruise of the RV Akademik Boris Petrov to the Baltic Sea and the Skagerrak Strait was carried out from 5 to 30 October, 2018. The studies included the study of the structure of water mass, near bottom currents, bottom sediments and biological communities.


2016 ◽  
Author(s):  
Roman Bezhenar ◽  
Kyung Tae Jung ◽  
Vladimir Maderich ◽  
Stefan Willemsen ◽  
Govert de With ◽  
...  

Abstract. After the earthquake and tsunami on 11 March, 2011 damaged the Fukushima Dai-ichi Nuclear Power Plant (FDNPP), an accidental release of a large amount of radioactive isotopes into both the air and the ocean occurred. Measurements provided by the Japanese agencies over the past four years show that elevated concentrations of 137Cs still remain in sediments, benthic organisms and demersal fishes in the coastal zone around the FDNPP. These observations indicate that there are 137Cs transfer pathways from bottom sediments to the marine organisms. To describe the transfer quantitatively, the dynamic food chain model BURN has been extended to include benthic marine organisms. The extended model takes into account both pelagic and benthic marine organisms grouped into several classes based on their trophic level and type of species: phytoplankton, zooplankton, and fishes (two types: piscivorous and non-piscivorous) for the pelagic food chain; deposit feeding invertebrates, demersal fishes feeding by benthic invertebrates and bottom omnivorous predators for the benthic food chain; crustaceans, molluscs and coastal predators feeding on both pelagic and benthic organisms. Bottom invertebrates ingest organic parts of bottom sediments with adsorbed radionuclides which then migrate up through the food chain. All organisms take radionuclides directly from water as well as food. The model was implemented into the compartment model POSEIDON-R and applied to the Northwestern Pacific for the period of 1945–2010 and then for the period of 2011–2020 to assess the radiological consequences of releases of 137Cs due to FDNPP accident. The model simulations for activity concentrations of 137Cs in both pelagic and benthic organisms in the coastal area around the FDNPP agree well with measurements for the period of 2011–2015. The decrease constant in the fitted exponential function of simulated concentration for the deposit ingesting invertebrates (0.45 y–1) is close to the decrease constant for the sediment observations (0.44 y–1), indicating that the gradual decrease of activity in the demersal fish (decrease constant is 0.46 y–1) was caused by the transfer of activity from organic matter deposited in bottom sediment through the deposit feeding invertebrates. The estimated from model transfer coefficient from bulk sediment to demersal fish in the model for 2012–2020 (0.13) is larger than that to the deposit feeding invertebrates (0.07) due to the biomagnification effect. In addition, the transfer of 137Cs through food webs for the period of 1945–2020 has been modelled for the Baltic Sea that was essentially contaminated due to global fallout and the Chernobyl accident. The model simulation results obtained with generic parameters are also in good agreement with available measurements in the Baltic Sea. Due to weak water exchange with the North Sea of the semi-enclosed Baltic Sea the chain of water-sediments- biota slowly evolves into a quasi-equilibrium state unlike the processes off the open Pacific Ocean coast where the FDNPP is located. Obtained results demonstrate the importance of the benthic food chain in the long-term transfer of 137Cs from contaminated bottom sediments to marine organisms and the potential of a generic model for the use in different regions of the World Ocean.


2012 ◽  
Vol 295 (3) ◽  
pp. 1957-1967 ◽  
Author(s):  
G. Lujanienė ◽  
P. Beneš ◽  
K. Štamberg ◽  
K. Jokšas ◽  
I. Kulakauskaitė

Microbiology ◽  
2017 ◽  
Vol 86 (1) ◽  
pp. 150-154 ◽  
Author(s):  
A. V. Teplyuk ◽  
N. I. Samarov ◽  
A. A. Korzhenkov ◽  
M. O. Ul’yanova ◽  
M. A. Goeva ◽  
...  

1985 ◽  
Vol 59 (3) ◽  
pp. 769-771 ◽  
Author(s):  
L. I. Gedeonov ◽  
L. M. Ivanova ◽  
K. A. Kostandov ◽  
V. M. Flegontov

2016 ◽  
Vol 13 (10) ◽  
pp. 3021-3034 ◽  
Author(s):  
Roman Bezhenar ◽  
Kyung Tae Jung ◽  
Vladimir Maderich ◽  
Stefan Willemsen ◽  
Govert de With ◽  
...  

Abstract. After the earthquake and tsunami on 11 March 2011 damaged the Fukushima Dai-ichi Nuclear Power Plant (FDNPP), an accidental release of a large amount of radioactive isotopes into both the air and the ocean occurred. Measurements provided by the Japanese agencies over the past 5 years show that elevated concentrations of 137Cs still remain in sediments, benthic organisms, and demersal fishes in the coastal zone around the FDNPP. These observations indicate that there are 137Cs transfer pathways from bottom sediments to the marine organisms. To describe the transfer quantitatively, the dynamic food chain biological uptake model of radionuclides (BURN) has been extended to include benthic marine organisms. The extended model takes into account both pelagic and benthic marine organisms grouped into several classes based on their trophic level and type of species: phytoplankton, zooplankton, and fishes (two types: piscivorous and non-piscivorous) for the pelagic food chain; deposit-feeding invertebrates, demersal fishes fed by benthic invertebrates, and bottom omnivorous predators for the benthic food chain; crustaceans, mollusks, and coastal predators feeding on both pelagic and benthic organisms. Bottom invertebrates ingest organic parts of bottom sediments with adsorbed radionuclides which then migrate up through the food chain. All organisms take radionuclides directly from water as well as food. The model was implemented into the compartment model POSEIDON-R and applied to the north-western Pacific for the period of 1945–2010, and then for the period of 2011–2020 to assess the radiological consequences of 137Cs released due to the FDNPP accident. The model simulations for activity concentrations of 137Cs in both pelagic and benthic organisms in the coastal area around the FDNPP agree well with measurements for the period of 2011–2015. The decrease constant in the fitted exponential function of simulated concentration for the deposit-feeding invertebrates (0.45 yr−1) is close to the observed decrease constant in sediments (0.44 yr−1). These results strongly indicate that the gradual decrease of activity in demersal fish (decrease constant is 0.46 yr−1) is caused by the transfer of activity from organic matter deposited in bottom sediment through the deposit-feeding invertebrates. The estimated model transfer coefficient from bulk sediment to demersal fish in the model for 2012–2020 (0.13) is larger than that to the deposit-feeding invertebrates (0.07). In addition, the transfer of 137Cs through food webs for the period of 1945–2020 has been modelled for the Baltic Sea contaminated due to global fallout and from the Chernobyl accident. The model simulation results obtained with generic parameters are also in good agreement with available measurements in the Baltic Sea. Unlike the open coastal system where the FDNPP is located, the dynamics of radionuclide transfer in the Baltic Sea reach a quasi-steady state due to the slow rate in water mass exchange in this semi-enclosed basin. Obtained results indicate a substantial contribution of the benthic food chain in the long-term transfer of 137Cs from contaminated bottom sediments to marine organisms and the potential application of a generic model in different regions of the world's oceans.


Author(s):  
Marta Kobusińska ◽  
Maria Skauradszun ◽  
Elżbieta Niemirycz

AbstractPentachlorophenol (PCP) and its derivatives are considered to be the precursors of dioxins, thus their concentrations in environmental compartments remain relatively correlated. Unlimited production and usage of PCP in recent decades may have posed a potential ecological threat to marine ecosystems due to uncontrolled discharge of this contaminant into the Vistula River and finally into the Gulf of Gdańsk. Since there are no data on PCP concentration in sediments of the southern part of the Baltic Sea, the level of contamination has been examined and possible influence of sediment properties in the Gulf of Gdańsk on the accumulation intensification has been investigated. The study has resulted in the evaluation of an efficient analytical procedure characterized by a low detection limit (LOD<1 ng g−1 d.w.). Instrumental analyses have been supplemented with Microtox® bioassay in order to assess the sediment toxicity. The obtained concentrations in collected samples varied from below the LOD in sandy sediments to 179.31 ng g−1 d.w. in silty sediments, exceeding the PNEC value of 25 ng g−1 d.w. (Predicted No Effect Concentration) estimated for the Baltic Sea (Muir & Eduljee 1999). It has been proven that properties of sediments from the Gulf of Gdańsk, including pH, Eh of bottom water, the content of water and organic matter, affect the rate of PCP accumulation. High toxicity has been recorded in the bottom sediments of the Gdańsk Deep but no statistically significant correlation between PCP concentration and the sediment toxicity has been observed. Analysis of PCP concentration distribution in sediment cores revealed that the surface layer is the most polluted one, which indicates a continuous inflow of PCP from the Vistula River. Horizontal PCP distribution in the sediment from the Gdańsk Deep reveals variability similar to that observed for highly chlorinated dioxins (Niemirycz & Jankowska 2011).


Sign in / Sign up

Export Citation Format

Share Document