scholarly journals Complex research in the 44th cruise of RV Akademik Boris Petrov

2019 ◽  
Vol 59 (5) ◽  
pp. 888-890
Author(s):  
A. V. Krek ◽  
V. T. Paka ◽  
E. V. Krek ◽  
E. E. Ezhova ◽  
D. V. Dorokhov ◽  
...  

The 44th cruise of the RV Akademik Boris Petrov to the Baltic Sea and the Skagerrak Strait was carried out from 5 to 30 October, 2018. The studies included the study of the structure of water mass, near bottom currents, bottom sediments and biological communities.

Author(s):  
Angelina E. Shatalova ◽  
Uriy A. Kublitsky ◽  
Dmitry A. Subetto ◽  
Anna V. Ludikova ◽  
Alar Rosentau ◽  
...  

The study of paleogeography of lakes is an actual and important direction in modern science. As part of the study of lakes in the North-West of the Karelian Isthmus, this analysis will establish the dynamics of salinity of objects, which will allow to reconstruct changes in the level of the Baltic Sea in the Holocene.


2019 ◽  
Vol 59 (4) ◽  
pp. 691-694
Author(s):  
V. Т. Paka ◽  
S. А. Shchuka ◽  
Е. Е. Ezhova ◽  
Ju. Ju. Polunina ◽  
А. А. Kondrashov ◽  
...  

In the 34th and 36th cruises of the r/v Akademik N. Strakhov, performed in the summer and autumn of 2017, the structure of the waters was studied on transects located along the route of inflow of saline North Sea waters into the Baltic Sea. Vertical profiling was performed with intervals between stations no more than 2 miles, in the free-fall mode, from the sea surface to the bottom. Reliable data on a thin structure at all depths, including a thin bottom layer, were obtained. In addition to the sections, new data were obtained on the bottom topography, as well as on the influence of advection of saline aerated waters on the composition, structure and distribution of biological communities in the Baltic Sea.


2016 ◽  
Author(s):  
Roman Bezhenar ◽  
Kyung Tae Jung ◽  
Vladimir Maderich ◽  
Stefan Willemsen ◽  
Govert de With ◽  
...  

Abstract. After the earthquake and tsunami on 11 March, 2011 damaged the Fukushima Dai-ichi Nuclear Power Plant (FDNPP), an accidental release of a large amount of radioactive isotopes into both the air and the ocean occurred. Measurements provided by the Japanese agencies over the past four years show that elevated concentrations of 137Cs still remain in sediments, benthic organisms and demersal fishes in the coastal zone around the FDNPP. These observations indicate that there are 137Cs transfer pathways from bottom sediments to the marine organisms. To describe the transfer quantitatively, the dynamic food chain model BURN has been extended to include benthic marine organisms. The extended model takes into account both pelagic and benthic marine organisms grouped into several classes based on their trophic level and type of species: phytoplankton, zooplankton, and fishes (two types: piscivorous and non-piscivorous) for the pelagic food chain; deposit feeding invertebrates, demersal fishes feeding by benthic invertebrates and bottom omnivorous predators for the benthic food chain; crustaceans, molluscs and coastal predators feeding on both pelagic and benthic organisms. Bottom invertebrates ingest organic parts of bottom sediments with adsorbed radionuclides which then migrate up through the food chain. All organisms take radionuclides directly from water as well as food. The model was implemented into the compartment model POSEIDON-R and applied to the Northwestern Pacific for the period of 1945–2010 and then for the period of 2011–2020 to assess the radiological consequences of releases of 137Cs due to FDNPP accident. The model simulations for activity concentrations of 137Cs in both pelagic and benthic organisms in the coastal area around the FDNPP agree well with measurements for the period of 2011–2015. The decrease constant in the fitted exponential function of simulated concentration for the deposit ingesting invertebrates (0.45 y–1) is close to the decrease constant for the sediment observations (0.44 y–1), indicating that the gradual decrease of activity in the demersal fish (decrease constant is 0.46 y–1) was caused by the transfer of activity from organic matter deposited in bottom sediment through the deposit feeding invertebrates. The estimated from model transfer coefficient from bulk sediment to demersal fish in the model for 2012–2020 (0.13) is larger than that to the deposit feeding invertebrates (0.07) due to the biomagnification effect. In addition, the transfer of 137Cs through food webs for the period of 1945–2020 has been modelled for the Baltic Sea that was essentially contaminated due to global fallout and the Chernobyl accident. The model simulation results obtained with generic parameters are also in good agreement with available measurements in the Baltic Sea. Due to weak water exchange with the North Sea of the semi-enclosed Baltic Sea the chain of water-sediments- biota slowly evolves into a quasi-equilibrium state unlike the processes off the open Pacific Ocean coast where the FDNPP is located. Obtained results demonstrate the importance of the benthic food chain in the long-term transfer of 137Cs from contaminated bottom sediments to marine organisms and the potential of a generic model for the use in different regions of the World Ocean.


2021 ◽  
Author(s):  
Andreas Lehmann ◽  
Kai Myrberg ◽  
Piia Post ◽  
Irina Chubarenko ◽  
Inga Dailidiene ◽  
...  

Abstract. In the Baltic Sea, salinity and its large variability, both horizontal and vertical, are key physical factors in determining the overall stratification conditions. In addition to that, salinity and its changes also have large effects on various ecosystem processes. Several factors determine the observed two-layer vertical structure of salinity. Due to the excess of river runoff to the sea, there is a continuous outflow of water masses in the surface layer with a compensating inflow to the Baltic in the lower layer. Also, the net precipitation plays a role in the water balance and consequently in the salinity dynamics. The salinity conditions in the sea are also coupled with the changes in the meteorological conditions. The ecosystem is adapted to the current salinity level: a change in the salinity balance would lead to ecological stress of flora and fauna, and related negative effects on possibilities to carry on sustainable development of the ecosystem. The Baltic Sea salinity regime has been studied for more than 100 years. In spite of that, there are still gaps in our knowledge of the changes of salinity in space and time. An important part of our understanding of salinity are its long-term changes. However, the available scenarios for the future development of salinity are still inaccurate. We still need more studies on various factors related to salinity dynamics. Among others more knowledge is needed, e.g. from meteorological patterns in various space and time scales and mesoscale variability in precipitation. Also, updated information on river runoff and inflows of saline water is needed to close the water budget. We still do not understand accurately enough the water mass exchange between North Sea and Baltic Sea and within its sub-basins. Scientific investigations of the complicated vertical mixing processes are additionally required. This paper is a continuation and update of the BACC II book which was published in 2015, including information from articles issued until 2012. After that, there have been many new publications on the salinity dynamics, not least because of the Major Baltic Inflow which took place in December 2014. Several key topics have been investigated, including the coupling of long-term variations of climate with the observed salinity changes. Here the focus is on observing and indicating the role of climate change for salinity dynamics. New results of MBI-dynamics and related water mass interchange between the Baltic Sea and the North Sea have been published. Those studies also included results from the MBI-related meteorological conditions, variability in salinity and exchange of water masses between various scales. All these processes are in turn coupled with changes in the Baltic Sea circulation dynamics.


2012 ◽  
Vol 295 (3) ◽  
pp. 1957-1967 ◽  
Author(s):  
G. Lujanienė ◽  
P. Beneš ◽  
K. Štamberg ◽  
K. Jokšas ◽  
I. Kulakauskaitė

Microbiology ◽  
2017 ◽  
Vol 86 (1) ◽  
pp. 150-154 ◽  
Author(s):  
A. V. Teplyuk ◽  
N. I. Samarov ◽  
A. A. Korzhenkov ◽  
M. O. Ul’yanova ◽  
M. A. Goeva ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document