Arsenic content in water and bottom sediments in the areas of chemical weapon dumps in the Bornholm basin of the Baltic Sea

2011 ◽  
Vol 36 (5) ◽  
pp. 315-323 ◽  
Author(s):  
I. S. Khalikov ◽  
Yu. I. Savin
Author(s):  
Angelina E. Shatalova ◽  
Uriy A. Kublitsky ◽  
Dmitry A. Subetto ◽  
Anna V. Ludikova ◽  
Alar Rosentau ◽  
...  

The study of paleogeography of lakes is an actual and important direction in modern science. As part of the study of lakes in the North-West of the Karelian Isthmus, this analysis will establish the dynamics of salinity of objects, which will allow to reconstruct changes in the level of the Baltic Sea in the Holocene.


2019 ◽  
Vol 59 (5) ◽  
pp. 888-890
Author(s):  
A. V. Krek ◽  
V. T. Paka ◽  
E. V. Krek ◽  
E. E. Ezhova ◽  
D. V. Dorokhov ◽  
...  

The 44th cruise of the RV Akademik Boris Petrov to the Baltic Sea and the Skagerrak Strait was carried out from 5 to 30 October, 2018. The studies included the study of the structure of water mass, near bottom currents, bottom sediments and biological communities.


2016 ◽  
Author(s):  
Roman Bezhenar ◽  
Kyung Tae Jung ◽  
Vladimir Maderich ◽  
Stefan Willemsen ◽  
Govert de With ◽  
...  

Abstract. After the earthquake and tsunami on 11 March, 2011 damaged the Fukushima Dai-ichi Nuclear Power Plant (FDNPP), an accidental release of a large amount of radioactive isotopes into both the air and the ocean occurred. Measurements provided by the Japanese agencies over the past four years show that elevated concentrations of 137Cs still remain in sediments, benthic organisms and demersal fishes in the coastal zone around the FDNPP. These observations indicate that there are 137Cs transfer pathways from bottom sediments to the marine organisms. To describe the transfer quantitatively, the dynamic food chain model BURN has been extended to include benthic marine organisms. The extended model takes into account both pelagic and benthic marine organisms grouped into several classes based on their trophic level and type of species: phytoplankton, zooplankton, and fishes (two types: piscivorous and non-piscivorous) for the pelagic food chain; deposit feeding invertebrates, demersal fishes feeding by benthic invertebrates and bottom omnivorous predators for the benthic food chain; crustaceans, molluscs and coastal predators feeding on both pelagic and benthic organisms. Bottom invertebrates ingest organic parts of bottom sediments with adsorbed radionuclides which then migrate up through the food chain. All organisms take radionuclides directly from water as well as food. The model was implemented into the compartment model POSEIDON-R and applied to the Northwestern Pacific for the period of 1945–2010 and then for the period of 2011–2020 to assess the radiological consequences of releases of 137Cs due to FDNPP accident. The model simulations for activity concentrations of 137Cs in both pelagic and benthic organisms in the coastal area around the FDNPP agree well with measurements for the period of 2011–2015. The decrease constant in the fitted exponential function of simulated concentration for the deposit ingesting invertebrates (0.45 y–1) is close to the decrease constant for the sediment observations (0.44 y–1), indicating that the gradual decrease of activity in the demersal fish (decrease constant is 0.46 y–1) was caused by the transfer of activity from organic matter deposited in bottom sediment through the deposit feeding invertebrates. The estimated from model transfer coefficient from bulk sediment to demersal fish in the model for 2012–2020 (0.13) is larger than that to the deposit feeding invertebrates (0.07) due to the biomagnification effect. In addition, the transfer of 137Cs through food webs for the period of 1945–2020 has been modelled for the Baltic Sea that was essentially contaminated due to global fallout and the Chernobyl accident. The model simulation results obtained with generic parameters are also in good agreement with available measurements in the Baltic Sea. Due to weak water exchange with the North Sea of the semi-enclosed Baltic Sea the chain of water-sediments- biota slowly evolves into a quasi-equilibrium state unlike the processes off the open Pacific Ocean coast where the FDNPP is located. Obtained results demonstrate the importance of the benthic food chain in the long-term transfer of 137Cs from contaminated bottom sediments to marine organisms and the potential of a generic model for the use in different regions of the World Ocean.


2013 ◽  
Vol 10 (1) ◽  
pp. 81-99 ◽  
Author(s):  
W. Gülzow ◽  
G. Rehder ◽  
J. Schneider v. Deimling ◽  
T. Seifert ◽  
Z. Tóth

Abstract. Methane and carbon dioxide were measured with an autonomous and continuous running system on a ferry line crossing the Baltic Sea on a 2–3 day interval from the Mecklenburg Bight to the Gulf of Finland in 2010. Surface methane saturations show great seasonal differences in shallow regions like the Mecklenburg Bight (103–507%) compared to deeper regions like the Gotland Basin (96–161%). The influence of controlling parameters like temperature, wind, mixing depth and processes like upwelling, mixing of the water column and sedimentary methane emissions on methane oversaturation and emission to the atmosphere are investigated. Upwelling was found to influence methane surface concentrations in the area of Gotland significantly during the summer period. In February 2010, an event of elevated methane concentrations in the surface water and water column of the Arkona Basin was observed, which could be linked to a wind-derived water level change as a potential triggering mechanism. The Baltic Sea is a source of methane to the atmosphere throughout the year, with highest fluxes occurring during the winter season. Stratification was found to promote the formation of a methane reservoir in deeper regions like Gulf of Finland or Bornholm Basin, which leads to long lasting elevated methane concentrations and enhanced methane fluxes, when mixed to the surface during mixed layer deepening in autumn and winter. Methane concentrations and fluxes from shallow regions like the Mecklenburg Bight are predominantly controlled by sedimentary production and consumption of methane, wind events and the change in temperature-dependent solubility of methane in the surface water. Methane fluxes vary significantly in shallow regions (e.g. Mecklenburg Bight) and regions with a temporal stratification (e.g. Bornholm Basin, Gulf of Finland). On the contrary, areas with a permanent stratification like the Gotland Basin show only small seasonal fluctuations in methane fluxes.


Sign in / Sign up

Export Citation Format

Share Document