Detection and identification of free radicals in the gaseous-phase ozonolysis of ethylene: microreactor-matrix ESR spectroscopy

1983 ◽  
Vol 74 (3) ◽  
pp. 273-299 ◽  
Author(s):  
F.J. Rákóczi ◽  
T.-K. Ha ◽  
Hs.H. Günthard
1990 ◽  
Vol 55 (10) ◽  
pp. 2377-2380
Author(s):  
Hamza A. Hussain

Nitroxide free radicals prepared from diethylamine, piperidine and pyrrolidine by oxidation with hydrogen peroxide were studied by ESR spectroscopy. The changes in the 14N splitting constant (aN) caused by the addition of KBr or tetraethylammonium bromide were measured in dependence on the concentration of the ions. For diethylamine nitroxide and piperidine nitroxide, the results are discussed in terms of two equilibria: the one, involving the anion, is associated with a gain or loss of hydrogen bonds to the nitroxide oxygen atom, the other is associated with the formation of solvent shared units involving the cation, which results in changes in the hydrogen bonding strenght. The large increase in the aN value in the case of pyrrolidine nitroxide is explained in terms of an interaction from one side of the positively charged N atom; the increase in aN in the case of diethylamine and piperidine nitroxides is explained in terms of interactions with both sides of the positively charged N atom.


2005 ◽  
Vol 40 (2-6) ◽  
pp. 218-223 ◽  
Author(s):  
S. Böhlke ◽  
D. Hermsdorf ◽  
J. Sichelschmidt ◽  
S. Starke

1982 ◽  
Vol 79 (9) ◽  
pp. 2885-2889 ◽  
Author(s):  
R. C. Sealy ◽  
J. S. Hyde ◽  
C. C. Felix ◽  
I. A. Menon ◽  
G. Prota ◽  
...  

1965 ◽  
Vol 18 (1) ◽  
pp. 20 ◽  
Author(s):  
MFR Mulcahy ◽  
DJ Williams

Knowledge of the reactivity of phenols towards simple free radicals is needed to throw light on the behaviour of the phenolic substances involved in the pyrolysis of coal and other organic materials. In the present investigation the reaction between methyl radicals and phenol vapour has been studied a t total pressures from 0.5 to 3 cmHg and temperatures from 445 to 547°K, the concentrations of methyl radicals and phenol being varied from 2 × 10-12 to 4 × 10-11 and 1 × 10-8 to 8 × 10-7 mole cm-3 respectively. The main products identified by gas chromatography were methane and o- and p-cresol, together with a little anisole and 2,4- and 2,6-dimethylphenol. The cresols are produced via hydrogen abstraction Diagram followed by combination of a methyl radical at a ring position of the phenoxy radical either ortho or para to the oxygen atom, e.g. in the case of the para position: Diagram The kinetics can be explained by postulating (a) that the keto forms of the cresols (methylcyclohexadienones) formed initially by reaction (6) have a finite lifetime in the gaseous phase and (b) that these molecules, which contain a tertiary hydrogen atom α to a system of a carbonyl bond and two carbon-carbon double bonds, partly undergo hydrogen abstraction by methyl radicals before they are able to enolize: CH3· + (HCH3 = C6H4 = O → CH4 + CH3C6H4O· The mechanism is consistent with the kinetics of formation of methane, the distribu- tion of the free electron in the phenoxy radical, the formation of o- and p-cresols as major products, the kinetics of formation of the cresols, and the high reactivity of the intermediate product towards methyl radicals.


Sign in / Sign up

Export Citation Format

Share Document