kinetics of formation
Recently Published Documents


TOTAL DOCUMENTS

773
(FIVE YEARS 48)

H-INDEX

50
(FIVE YEARS 4)

2021 ◽  
pp. 130612
Author(s):  
Eliara Acipreste Hudson ◽  
Hauster Maximiler Campos de Paula ◽  
Yara Luiza Coelho ◽  
Nícolas Glanzmann ◽  
Adilson David da Silva ◽  
...  

2021 ◽  
Vol 329 ◽  
pp. 115537
Author(s):  
Nazia Iqbal ◽  
S.M. Shakeel Iqubal ◽  
Aejaz Abdullatif Khan ◽  
Tasneem Mohammed ◽  
Ali Mohamed Alshabi ◽  
...  

2021 ◽  
Vol 75 (1) ◽  
pp. 74-79
Author(s):  
Ankit Singhal ◽  
Philipp Grögli ◽  
Bernd Geiser ◽  
Alina Handl

The Briggs-Rauscher (BR) reaction is free radical based where the kinetics of formation of different iodide species leads to potentiometric and color oscillations. These oscillations were monitored in this study using a UV/Vis attenuated total reflection probe to develop an assay to measure the antioxidant content in complex matrices. The periodicity of the BR reaction was found to be very consistent (range 24–25 seconds, n = 16). Adding various amounts of ascorbic acid, a well-known antioxidant, led to an inhibition of the reaction with a linear calibration curve of antioxidant periodicity time (APT, r 2 > 0.99). The validity of this test in complex matrices was studied by determining the APT of nine fruits, and the resulting antioxidant capacity in ascorbic acid equivalency was calculated. The results generated by this assay were found be accurate through comparison with the well-established FRAP assay. These results show that visual or spectrometric monitoring of BR reaction can be used as a reliable, quick, and inexpensive alternative to more established assays with the added advantage that values generated from this assay is at pH 2 which is similar to that in the human stomach.


2021 ◽  
Vol 395 (1) ◽  
pp. 2000211
Author(s):  
Monica Gallo ◽  
Domenico Montesano ◽  
Martina Ciaravolo ◽  
Fulvio De Paola ◽  
Giovanni Dal Poggetto ◽  
...  

Author(s):  
Ahsan Habib ◽  
Salma Serniabad ◽  
Mohammad Shamim Khan ◽  
Rokayea Islam ◽  
Mrittika Chakraborty ◽  
...  

In this work, kinetics of the reaction between 5,10,15,20-tetrakis(N-methylpyridium-4-yl)porphyrin and Ni2+ species were investigated in aqueous solution at 25 ±1 ºC in I = 0.10 M (NaNO3). Speciation of Ni2+ was carried out in I = 0.10 M (NaNO3) in order to provide the distribution of the Ni2+ species with different solution pH. The experimental data have been compared with the speciation diagram constructed from the values of hydrolysis constants of Ni2+ ion. Speciation data showed that the hexaaquanickel(II), [Ni(H2O)6]2+, ions take place in hydrolysis reactions through formation of [Ni(OH2)6-n(OH)n]2-n species with solution pH. Based on the speciation of Ni2+ and pH dependent rate constants, rate expression can be written as: d[Ni(TMPyP)4+]/dt = (k1[Ni2+(aq)] + k2[Ni(OH)+(aq)] + k3[Ni(OH)2o(aq)] + k4[Ni(OH)3-(aq)])[H2TMPyP4+], where k1, k2, k3 and k4 were found to be k1 = (0.62 ± 0.22) × 10-2; k2 = (3.60 ± 0.40) × 10-2; k3 = (2.09 ± 0.52) × 10-2, k4 = (0.53 ± 0.04) × 10-2 M-1s-1 at 25 ±1 °C, respectively. Kinetic results showed that monohydroxo, [Ni(H2O)5(OH)]+, is the most reactive among the [Ni(OH2)6-n(OH)n]2-n species. The enhanced reactivity has been ascribed to the formation of hydrogen bonding between oxygen atom of hydroxyl group of the [Ni(H2O)5(OH)]+ species and the pyrrolic hydrogen atom of the [H2TMPyP]4+. The rate of formation of [Ni(II)TMPyP]4+ complex was to be 3.99 × 10-2 M-1s-1 in I = 0.10 M, NaNO3 (25 ± 1 ºC). Ionic strength effect on the reaction rate is suggested that the net charge of the tetracationic porphyrin is to be +3.6 on the basis of Brønsted-Bjerrum equation. The UV-Vis and fluorescence data revealed that [Ni(II)TMPyP]4+ and H2(TMPyP)4+ interact with DNA, and UV-Vis results suggest that Ni(II)-porphyrin and free base porphyrin interact with DNA via outside binding with self-stacking and intercalation, respectively. Mechanism of kinetics of formation of the [Ni(II)TMPyP]4+ complex in aqueous medium is discussed. An investigation of application of the [Ni(II)TMPyP]4+ complex along with other metalloporphyrins such as Zn2+-, Ru2+-, Pt2+-, [Au(III)TMPyP]5+ as anti-COVID-19 agents is now in progress under international collaboration.


2021 ◽  
pp. 0734242X2098205
Author(s):  
Adoum Mahamat Ahmat ◽  
Yannick Mamindy-Pajany

High sulfate concentrations in industrial effluents as well as solid materials (excavated soils, dredged sediments, etc.) are a major hindrance for circular economy outlooks. SO42- acceptability standards are indeed increasingly restrictive, given the potential outcomes for public health and ecosystems. This literature review deals with the treatment pathways relying on precipitation, adsorption and microbial redox principles. Although satisfactory removal performances can be achieved with each of them, significant yield differences are displayed throughout the bibliography. The challenge here was to identify the parameters leading to this variability and to assess their impact. The precipitation pathway is based on the formation of two main minerals (ettringite and barite). It can lead to total sulfate removal but can also be limited by aqueous wastes chemistry. Stabilizer kinetics of formation and equilibrium are highly constrained by background properties such as pH, Eh, SO42- saturation state and inhibiting metal occurrences. Regarding the adsorption route, sorbents’ intrinsic features such as the qmax parameter govern removal yields. Concerning the microbial pathway, the chemical oxygen demand/SO42- ratio and the hydraulic retention time, which are classically evoked as yield variation factors, appear here to be weakly influential. The effect of these parameters seems to be overridden by the influence of electron donors, which constitute a first order factor of variability. A second order variability can be read according to the nature of these electron donors. Approaches using simple monomers (ethanol lactates, etc.) perform better than those using predominantly ligneous organic matter.


Sign in / Sign up

Export Citation Format

Share Document