Stimulation of inositol phosphate formation in FRTL-5 rat thyroid cells by catecholamines and its relationship to changes in 45Ca2+ efflux and cyclic AMP accumulation

1987 ◽  
Vol 54 (2-3) ◽  
pp. 151-163 ◽  
Author(s):  
Marvin I. Berman ◽  
Colin G. Thomas ◽  
Shihadeh N. Nayfeh
1985 ◽  
Vol 105 (1) ◽  
pp. 7-15 ◽  
Author(s):  
S. P. Bidey ◽  
J. M. Emmerson ◽  
N. J. Marshall ◽  
R. P. Ekins

ABSTRACT A clonal strain of rat thyroid cells (FRTL-5) has been used to investigate the biological activity of a Research Standard preparation of long-acting thyroid stimulator (LATS-B). Using the accumulation of intracellular cyclic AMP as a response parameter, significant stimulation was attained at a LATS-B dose of 0·75 mu./ml. The inter-bioassay coefficient of variation in response to a fixed dose of LATS-B (1·25 mu./ml) was 20·5%, as determined using eight sequential subcultures. Cells cultured directly from frozen stocks responded to both bovine TSH and LATS-B in a manner indistinguishable from cells subjected to regular subculturing. Cyclic AMP responses to incremental doses of LATS-B were potentiated after the inclusion of a low dose of forskolin (0·1 μmol/l). However, forskolin addition had no effect on the time-course of LATS-B-stimulated cyclic AMP accumulation, half-maximal responses being attained after 60 min in either the presence or absence of the diterpene. In the presence of 0·1 μmol forskolin/l, intracellular cyclic AMP responses to LATS-B were demonstrably parallel with those to human TSH (Second International Reference Preparation, 80/558), whilst parallel incremental cyclic AMP responses were also observed in respect of TSH and serial dilutions of a potent thyroid-stimulating immunoglobulin (TSIg) preparation, indicating that for this particular Graves' disease patient, TSIg bioactivity may be expressed in terms of a convenient and reproducible standard, as TSH microunit equivalents. J. Endocr. (1985) 105, 7–15


1984 ◽  
Vol 101 (3) ◽  
pp. 269-NP ◽  
Author(s):  
S. P. Bidey ◽  
L. Chiovato ◽  
A. Day ◽  
M. Turmaine ◽  
R. P. Gould ◽  
...  

ABSTRACT The cyclic AMP response to bovine TSH was characterized in a strain of rat thyroid follicular cells (FRTL-5) maintained in continuous culture. Significant stimulation of intracellular cyclic AMP was attained at a TSH dose of 5 μu./ml. Cyclic AMP accumulation continued to increase, at higher TSH doses, with no evidence for attainment of a maximum level at the highest dose tested (5 mu./ml). The precision of TSH measurement was better than 10% over the range 50–5000 μu./ml, comparing favourably with that observed with analogous assays based on human cells, tissue slices or membrane preparations. Using sequential subcultures of FRTL-5 cells, the between-assay variation in response to a single dose of a standard preparation of bovine TSH (53/11; 370 μu./ml) was of the order of 20% which compared favourably with the between-assay variation observed with different cultures of human thyroid cells. Prolongation of the incubation of FRTL-5 cells with TSH to 3 h revealed a progressive increase in the extracellular accumulation of cyclic AMP. Addition of TSH to resting FRTL-5 cells resulted in a stimulation of inorganic iodide uptake with pronounced bell-shaped dose–response characteristics. Thus a maximum uptake was observed at a TSH dose of 100 μu./ml with a significant reduction at higher doses. Acute stimulation of cells with TSH (100 μu./ml) resulted in a rapid and marked alteration in cell morphology, with evidence of cellular retraction and surface ruffling. J. Endocr. (1984) 101, 269–276


1987 ◽  
Vol 253 (1) ◽  
pp. 249-256 ◽  
Author(s):  
Marvin I. Berman ◽  
George Jerdack ◽  
Colin G. Thomas ◽  
Shihadeh N. Nayfeh

1990 ◽  
Vol 2 (5) ◽  
pp. 461-470 ◽  
Author(s):  
A KVANTA ◽  
P GERWINS ◽  
M JONDAL ◽  
B FREDHOLM

1999 ◽  
pp. 94-103 ◽  
Author(s):  
T Kimura ◽  
JE Dumont ◽  
A Fusco ◽  
J Golstein

In the rat thyroid cell lines PC Cl3, FRTL- 5 and WRT, proliferation is mainly regulated by insulin or IGF, and TSH. However, the mechanism regulating cell mass doubling prior to division is still unknown. Our laboratory has shown that in dog thyroid cells insulin promotes growth in size while TSH in the presence of insulin triggers DNA replication. In the absence of insulin, TSH has no effect on cell growth. In this report we investigated insulin action on both cell mass and DNA synthesis and its modulation by TSH and insulin in PC Cl3 and FRTL-5 cells. In PC Cl3 cells, insulin activated not only DNA synthesis but also protein synthesis and accumulation. Although TSH potentiated the stimulation of DNA synthesis induced by insulin, enhancement of protein synthesis by both agents was additive. All TSH effects were reproduced by forskolin. Similar effects were also obtained in FRTL-5 cells. This suggests that insulin and TSH, via cAMP, modulate both growth in size and DNA replication in these cell lines. Lovastatin, which blocks 3-hydroxy-3-methylglutaryl coenzyme A reductase, decreased the induction of DNA synthesis, but not of protein synthesis induced by insulin or TSH in PC Cl3 cells. In FRTL-5 cells, lovastatin reduced protein and DNA synthesis stimulated by insulin but not TSH-induced protein synthesis. Taking these data together, we propose that insulin and/or TSH both modulate cell mass doubling and DNA synthesis in these cell lines, presumably via different pathways, and that there are at least two pathways which regulate growth in size in FRTL-5 thyroid cells: one triggered by insulin, which is lovastatin sensitive, and the other activated by TSH, which is not sensitive to lovastatin.


Sign in / Sign up

Export Citation Format

Share Document