Protein-synthesis inhibitor blocks (R,S)-α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)- or substance P-induced phase shift of the circadian rhythm of neuronal activity in the rat suprachiasmatic nucleus in vitro

1994 ◽  
Vol 168 (1-2) ◽  
pp. 159-162 ◽  
Author(s):  
Shigenobu Shibata ◽  
Akihito Watanabe ◽  
Toshiyuki Hamada ◽  
Shigenori Watanabe
1994 ◽  
Vol 141 (1) ◽  
pp. 15-31 ◽  
Author(s):  
F J Thomson ◽  
M S Johnson ◽  
R Mitchell ◽  
B Wolbers

Abstract The phospholipase A2 (PLA2) inhibitors, quinacrine, p-bromophenacyl bromide, ONO-RS-082, aristolochic acid and chloracysine blocked the priming effect of LHRH, but not acute LHRH-induced gonadotrophin release measured in anterior pituitary pieces in pro-oestrous rats in vitro. These results suggest that the intracellular mechanisms underlying LHRH priming are distinct from those which mediate LH release in the present circumstances in that they involve PLA2. Furthermore, neither LHRH-induced LH release from preprimed tissue nor Ca2+-induced LH release were attenuated by quinacrine, indicating that this inhibitor does not interfere with the general Ca2+-dependent secretory apparatus of the gonadotroph and that the critical period for its action is in the induction of priming. LHRH induced the release of [3H]arachidonic acid ([3H]AA) from [3H]AA-prelabelled anterior pituitary tissue from pro-oestrous rats; a response which was sensitive to inhibitors of PLA2, of protein kinase C (PKC) and of protein synthesis. Activation of PKC also resulted in [3H]AA release which was inhibited with exactly the same pharmacological profile as the response to LHRH. Both gonadotrophin secretion and [3H]AA release responses to LHRH and to phorbol ester varied in parallel during the oestrous cycle and in ovariectomized/oestradiol-17β-replaced animals, as did their sensitivity to quinacrine and the protein synthesis inhibitor cycloheximide. These results indicate that LHRH priming is dependent on a hormonally regulated cascade involving a distinct form of PKC acting through a protein synthesis-dependent step to release AA by means of PLA2 activity. The priming effect was mimicked (at least in part) by conditioning preincubation with AA, confirming the functional relevance of this signalling cascade. Results using standard inhibitors of lipoxygenase/epoxygenase pathways were equivocal as to whether these pathways were critically involved, whilst cyclo-oxygenase inhibitors were completely without effect. The steps downstream from AA (and its possible metabolites) by which stimulus–secretion coupling is up-regulated in priming remain to be clarified. Journal of Endocrinology (1994) 141, 15–31


1980 ◽  
Vol 84 (1) ◽  
pp. 1-15
Author(s):  
J. W. Jacklet

1. The circadian rhythm of compound action potentials (CAP) frequency recorded from the isolated eye of Aplysia in culture medium and darkness was subjected to step and pulse treatments with anisomycin, a protein synthesis inhibitor. 2. The step application of anisomycin and its continued presence in the culture medium lengthened the period of the rhythm in a dose-dependent manner. At 10(−8) M the period was increased from the normal 26.5 h to about 28 h and at 10(−7) M the period was lengthened to 31 h or longer. At 10(−6) M the rhythm was suppressed but the CAP activity continued without the cyclic variations in CAP frequency. 3. Six-hour pulses of anisomycin at 10(−6) M caused phase-dependent phase-shifts of the rhythm. Maximum phase delays of 15 h were obtained at CT (circadian time) 2 and maximum phase advances of 4 h were obtained at CT 6. The phase response curves at 12, 15 and 17 degrees C were essentially identical. 4. Anisomycin appears to act rather selectively on the circadian clock mechanism. It does not alter the CAP amplitude and duration and it does not alter the bursting pacemaker mechanism of the optic nerve CAP or central neurones. 5. The results support the hypothesis that the synthesis of a protein or polypeptide on eucaryotic ribosomes is an essential part of the circadian clock timing mechanism. The sensitivity of the clock to anisomycin is the same at three different temperatures (12, 15 and 17 degrees C) within the physiological range of temperatures for Aplysia, as expected for a clock whose period length is temperature compensated (Q10 1.02) over that same range. 6. At the critical phases of CT 1-4, anisomycin pulses often caused unusual perturbations of the rhythm. These effects are consistent with the hypothesis that the circadian rhythm is a multioscillator system.


2014 ◽  
Vol 26 (1) ◽  
pp. 186
Author(s):  
Y. Okudaira ◽  
H. Funahashi

In human, bovine, mouse, and rat sperm, translation of RNA to proteins in the mitochondrial ribosome during capacitation has been reported to be important for fertilization. The objective of this study was to examine effect of protein synthesis inhibitor (ribosome inhibitor) on boar sperm capacitation and IVF. Sperm from an ejaculated sperm-rich fraction of Berkshire boars were washed by centrifugation (1500 rpm for 35 min) in a Percoll gradient (45/90%) and then incubated in modified Medium-199 containing 0.4% BSA and 5 mM caffeine sodium benzoate, supplemented with or without a mitochondrial ribosome-specific (55S ribosome) inhibitor, chloramphenicol (CP; 0.3 mM), or a cytoplasmic ribosome-specific (80S ribosome) inhibitor, cyclohexide (CH; 3.6 mM), in an atmosphere of 5% CO2 in air at 39°C for 45 or 90 min. At 45 and 90 min after culture, sperm viability, motility, and chlortetracyclin-stained patterns (to assess the sperm functional status, capacitation, and acrosome reaction) were examined. Porcine oocytes were matured in vitro for 44 h in porcine oocyte medium supplemented with eCG, hCG, and dibutyryl cyclic adenosine monophosphate for the first 20 h. Matured oocytes after the removal of cumulus cells were co-cultured with sperm (final conc.: 2.5 × 105 cells mL–1) in the absence or presence of CP or CH for 8 h. Sperm penetrability was also determined. Statistical analyses of data from 4 replicated trials were performed by ANOVA. After 45 and 90 min of culture, neither CP nor CH affected sperm viability and motility (P > 0.05). The addition of CP after 45 and 90 min of culture significantly (P < 0.05) decreased capacitated and acrosome-reacted sperm rates, as detected by chlortetracyclin fluorescence assay (capacitated: control 9.6 v. CP 5.6%, control 17.8 v. CP 10.2%; acrosome reacted: control 4.6 v. CP 2.2%, control 9.2 v. CP 4.8%, respectively; P < 0.05). In the presence of CH, IVF rate and number of sperm per penetrated egg were decreased (control 80.8 v. CH 46.8%, 2.2 v. 1.4, respectively; P < 0.05). In the presence of CH, however, the percentage of metaphase II oocytes after co-culture with sperm for 8 h was lower than other 2 groups (control 87.6 v. CP 85.5 v. CH 74.0%; P < 0.05), and the percentage of A/T-II oocytes was higher than in the other 2 groups (control 1.1 v. CP 0 v. CH 9.4%; P < 0.05). From these results, we conclude that mitochondrial ribosome-specific inhibitor, chloramphenicol, affects capacitation and acrosome reaction but not penetration, whereas cytoplasmic ribosome-specific inhibitor, cyclohexide, decreases the number of oocytes that reach metaphase II stage and are penetrated.


2000 ◽  
Vol 7 (1-2) ◽  
pp. 1-8 ◽  
Author(s):  
Teresa Montiel ◽  
Daniel Almeida ◽  
Iván Arango ◽  
Eduardo Calixto ◽  
César Casasola ◽  
...  

In electrophysiological terms, experimental models of durable information storage in the brain include long-term potentiation (LTP), long-term depression, and kindling. Protein synthesis correlates with these enduring processes. We propose a fourth example of long-lasting information storage in the brain, which we call the GABA-withdrawal syndrome (GWS). In rats, withdrawal of a chronic intracortical infusion of GABA, a ubiquitous inhibitory neurotransmitter, induced epileptogenesis at the infusion site. This overt GWS lasted for days. Anisomycin, a protein synthesis inhibitor, prevented the appearance of GWSin vivo. Hippocampal and neocortical slices showed a similar post-GABA hyperexcitabilityin vitroand an enhanced susceptibility to LTP induction. One to four months after the epileptic behavior disappeared, systemic administration of a subconvulsant dose of pentylenetetrazol produced the reappearance of paroxysmal activity. The long-lasting effects of tonicGABAAreceptor stimulation may be involved in long-term information storage processes at the cortical level, whereas the cessation ofGABAAreceptor stimulation may be involved in chronic pathological conditions, such as epilepsy. Furthermore, we propose that GWS may represent a common key factor in the addiction to GABAergic agents (for example, barbiturates, benzodiazepines, and ethanol). GWS represents a novel form of neurono-glial plasticity. The mechanisms of this phenomenon remain to be understood.


1995 ◽  
Vol 268 (3) ◽  
pp. R699-R706 ◽  
Author(s):  
J. Liao ◽  
J. A. Keiser ◽  
W. E. Scales ◽  
S. L. Kunkel ◽  
M. J. Kluger

Using an isolated perfused rat liver (IPRL) preparation, we assessed whether corticosterone may contribute to the rise in tumor necrosis factor (TNF) and interleukin-6 (IL-6) in rats after injection with lipopolysaccharide (LPS) or exposure to psychological stress. Intravenous infusion of LPS into the IPRL led to dose-dependent increases in TNF and IL-6 concentrations in the effluent. Anisomycin, a protein synthesis inhibitor, completely blocked the rise in TNF and IL-6 concentration in the IPRL effluent, supporting the hypothesis that the synthesis (or release) of these cytokines was dependent on protein synthesis. Intravenous infusion of corticosterone at nonstressed (35 ng/ml) and stressed levels (350 ng/ml) increased TNF and/or IL-6 release. However, when LPS was combined with corticosterone, the lower dose of corticosterone facilitated the release of cytokines, whereas the higher dose of corticosterone suppressed the release of cytokines. We then showed that isolated Kupffer cells were capable of significant TNF and IL-6 production and that corticosterone decreased LPS-induced cytokine production in these cells. Our data support the hypothesis that the liver is an important source of circulating cytokines in response to LPS. In addition, although in vitro data generally support the hypothesis that corticosterone suppresses the production of cytokines, our in situ data support the hypothesis that physiological levels of corticosterone cause an increase in TNF and IL-6.


2019 ◽  
Vol 116 (17) ◽  
pp. 8155-8160 ◽  
Author(s):  
Jay Bassan ◽  
Lisa M. Willis ◽  
Ravi N. Vellanki ◽  
Alan Nguyen ◽  
Landon J. Edgar ◽  
...  

Protein synthesis is central to maintaining cellular homeostasis and its study is critical to understanding the function and dysfunction of eukaryotic systems. Here we report L-2-tellurienylalanine (TePhe) as a noncanonical amino acid for direct measurement of protein synthesis. TePhe is synthetically accessible, nontoxic, stable under biological conditions, and the tellurium atom allows its direct detection with mass cytometry, without postexperiment labeling. TePhe labeling is competitive with phenylalanine but not other large and aromatic amino acids, demonstrating its molecular specificity as a phenylalanine mimic; labeling is also abrogated in vitro and in vivo by the protein synthesis inhibitor cycloheximide, validating TePhe as a translation reporter. In vivo, imaging mass cytometry with TePhe visualizes translation dynamics in the mouse gut, brain, and tumor. The strong performance of TePhe as a probe for protein synthesis, coupled with the operational simplicity of its use, suggests TePhe could become a broadly applied molecule for measuring translation in vitro and in vivo.


Sign in / Sign up

Export Citation Format

Share Document