Effects of nucleus raphe magnus stimulation on jaw-opening reflex and trigeminal brain-stem neurone responses in normal and tooth pulp-deafferented cats

Pain ◽  
1986 ◽  
Vol 27 (3) ◽  
pp. 349-360 ◽  
Author(s):  
J. W. Hu ◽  
B. J. Sessle ◽  
J. O. Dostrovsky ◽  
Y. Lenz
1986 ◽  
Vol 56 (3) ◽  
pp. 555-571 ◽  
Author(s):  
A. R. Light ◽  
E. J. Casale ◽  
D. M. Menetrey

Single neurons in spinal laminae I and II of cats were recorded intracellularly while stimulating in nucleus raphe magnus (NRM) and periaqueductal gray (PAG) with monopolar tungsten microelectrodes. Brain stem stimulation inhibited about one-half of the nociceptive-specific neurons, whereas the other half was unaffected. Brain stem stimulation inhibited about one-half of the multireceptive neurons, but the other half was excited and then inhibited. Brain stem stimulation inhibited about one-third of the low-threshold neurons, one-half was excited then inhibited, and one-fifth showed no effect. In all classes of neurons, the inhibition was produced by an inhibitory postsynaptic potential (IPSP) that began with a latency of approximately 25 ms and lasted approximately 400 ms following a single stimulus. The IPSP occurred with a small conductance increase and was reversed by hyperpolarizing currents applied to the cell. These data indicate that NRM and PAG modulated laminae I and II neurons via a postsynaptic mechanism. The conduction velocity of this descending pathway was calculated to range from 6.1 to 66.6 m/s with an average of 13.8 m/s. These data also indicate heterogeneity in the pathway, since some neurons were inhibited, whereas other neurons were excited then inhibited by descending stimulation. Finally, these data indicate specificity in these descending pathways since nearly one-half of neurons that had low-threshold inputs were excited by brain stem stimulation, whereas nearly all nociceptive-specific neurons were either inhibited or unaffected.


1987 ◽  
Vol 65 (6) ◽  
pp. 1281-1289 ◽  
Author(s):  
P. Hinckel ◽  
W. T. Perschel

Neurons in two lower brain stem areas, the nucleus raphe magnus and the subcoeruleus region, have been shown to be part of the thermoafferent system. It is concluded from microcut experiments in unanaesthetized guinea pigs that inhibition of shivering caused by nucleus raphe magnus stimulation is mediated partly by ascending and partly by descending efferents of the nucleus raphe magnus. Electrical stimulation of the subcoeruleus area caused excitatory metabolic responses. Interruption of the ascending efferents of the subcoeruleus area did not prevent the metabolic activation. It is concluded that the excitatory responses are partly mediated by descending efferents of the subcoeruleus area. The descending pathways project mainly to motoneurone pools and to dorsal horn cells. In cold-acclimated guinea pigs, the average maximum activity of bell-shaped subcoeruleus cold-responsive units was reduced significantly in comparison with cold-responsive neurons in animals acclimated to normal room temperature. Furthermore, peak activity of warm-responsive units in the nucleus raphe magnus was larger in cold-acclimated animals than in animals acclimated to normal room termperature. These neuronal changes may contribute via descending lower loops and via ascending upper loops to long-term slope reduction of metabolic cold defence and shivering threshold displacements.


Pain ◽  
1990 ◽  
Vol 41 ◽  
pp. S68
Author(s):  
Tiansheng Fan ◽  
Xianxiang Chu ◽  
Xueguo Zhang ◽  
Tianhan Kong

Sign in / Sign up

Export Citation Format

Share Document