lower brain stem
Recently Published Documents


TOTAL DOCUMENTS

147
(FIVE YEARS 1)

H-INDEX

41
(FIVE YEARS 0)

Author(s):  
Marwa Abbas Abdulrazzak Kubba

SMA (Spinal muscular atrophies) are category of hereditary inflammation in the funiculars and lower brain stem, tissue fatigue, and degeneration characterized by motor neuron failure. The analytic and genetic phenotypes incorporate a diverse continuum distinguished depending on age of onset, tissue participation arrangement, and inheritance arrangement. Rapid advancements in genetic science have expedite the discovery of causative genes over the past few years, and provide significant access in awareness the biochemical and neurological basis of Spinal muscular atrophies and insights into the motor neurons' selective deficiency. Popular path physiological topics include Ribonucleic Acid metabolism and splicing abnormalities, axonal transmission, and motor neurons' advancement and communication. These also collectively revealed possible innovative prevention methods and comprehensive attempts are what benefits does the company offer? Although a range of promising therapeutic therapies for Spinal muscular atrophies is emerging, it is essential to identify therapeutic windows and establish responsive and appropriate biomarkers to promote future analytic trial success. This research offers a description of Spinal muscular atrophies' logical manifestations and genetics. It discusses recent advancements in learning—mechanisms for the pathogenesis of inflammation and new treatment methods.


2018 ◽  
Author(s):  
Ivan Smalianchuk ◽  
Uday Jagadisan ◽  
Neeraj J. Gandhi

AbstractThe ability to interact with our environment requires the brain to transform spatially-represented sensory signals into temporally-encoded motor commands for appropriate control of the relevant effectors. For visually-guided eye movements, or saccades, the superior colliculus (SC) is assumed to be the final stage of spatial representation, and instantaneous control of the movement is achieved through a rate code representation in the lower brain stem. We questioned this dogma and investigated whether SC activity also employs a dynamic rate code, in addition to the spatial representation. Noting that the kinematics of repeated movements exhibits trial-to-trial variability, we regressed instantaneous SC activity with instantaneous eye velocity and found a robust correlation throughout saccade duration. Peak correlation was tightly linked to time of peak velocity, and SC neurons with higher firing rates exhibited stronger correlations. Moreover, the strong correlative relationship was preserved when eye movement profiles were substantially altered by a blink-induced perturbation. These results indicate that the rate code of individual SC neurons can control instantaneous eye velocity, similar to how primary motor cortex controls hand movements, and argue against a serial process for transforming spatially encoded information into a rate code.


Endocrinology ◽  
2015 ◽  
Vol 156 (6) ◽  
pp. 2278-2287 ◽  
Author(s):  
Shiori Minabe ◽  
Chikaya Deura ◽  
Kana Ikegami ◽  
Teppei Goto ◽  
Makoto Sanbo ◽  
...  

2012 ◽  
Vol 302 (12) ◽  
pp. R1401-R1410 ◽  
Author(s):  
Zhixiong Chen ◽  
Susan P. Travers ◽  
Joseph B. Travers

Consummatory responses to taste stimuli are modulated by visceral signals processed in the caudal nucleus of the solitary tract (cNST) and ventrolateral medulla. On the basis of decerebrate preparations, this modulation can occur through local brain stem pathways. Among the large number of neuropeptides and neuromodulators implicated in these visceral pathways is neuropeptide Y (NPY), which is oftentimes colocalized in catecholaminergic neurons themselves implicated in glucoprivic-induced feeding and satiety. In addition to the cNST and ventrolateral medulla, noradrenergic and NPY receptors are found in circumscribed regions of the medullary reticular formation rich in preoromotor neurons. To test the hypothesis that NPY may act as a neuromodulator on preoromotor neurons, we recorded the effects of bath application of NPY and specific Y1 and Y2 agonists on currents elicited from electrical stimulation of the rostral (taste) NST in prehypoglossal neurons in a brain stem slice preparation. A high proportion of NST-driven responses were suppressed by NPY, as well as Y1 and Y2 agonists. On the basis of paired pulse ratios and changes in membrane resistance, we concluded that Y1 receptors influence these neurons both presynaptically and postsynaptically and that Y2 receptors have a presynaptic locus. To test the hypothesis that NPY may act in concert with norepinephrine (NE), we examined neurons showing suppressed responses in the presence of a Y2 agonist and demonstrated a greater degree of suppression to a Y2 agonist/NE cocktail. These suppressive effects on preoromotoneurons may reflect a satiety pathway originating from A2 neurons in the caudal brain stem.


2010 ◽  
Vol 103 (6) ◽  
pp. 3266-3273 ◽  
Author(s):  
Claire F. Honeycutt ◽  
T. Richard Nichols

Cats actively respond to horizontal perturbations of the supporting surface according to the force constraint strategy. In this strategy, the force responses fall into two groups oriented in either rostral and medial directions or caudal and lateral directions, rather than in strict opposition to the direction of perturbation. When the distance between forelimbs and hindlimbs is decreased, the responses are less constrained and directed more in line with the perturbation. We have recently shown that electromyographic responses from limb muscles of the decerebrate cat resemble those obtained in the intact animal. Our objectives here were to determine whether the decerebrate cat preparation would also exhibit the force constraint strategy and whether that strategy would exhibit the characteristic dependence on limb position on the strategy. Horizontal support surface perturbations were delivered and three-dimensional exerted forces were recorded from all four limbs. Clustered force responses were generated by all four limbs and were found to be statistically indistinguishable between animals decerebrated using two different levels of transection. The directionality of the force responses was preserved throughout successive time epochs during the perturbations. In addition, the clustering of force responses increased with distance between forelimbs and hindlimbs. These results indicate that the force constraint strategy used by terrestrial animals to maintain stability can be generated without the assistance of the cerebral cortices and without prior training. This suggests an important role for the lower brain stem and spinal cord in generating an appropriate strategy to maintain stability.


2009 ◽  
Vol 152 (2) ◽  
pp. 287-292 ◽  
Author(s):  
Giacomo Pavesi ◽  
Silvia Berlucchi ◽  
Marina Munari ◽  
Renzo Manara ◽  
Renato Scienza ◽  
...  

2009 ◽  
Vol 102 (1) ◽  
pp. 244-258 ◽  
Author(s):  
Yong Ren ◽  
Liping Zhang ◽  
Ying Lu ◽  
Hong Yang ◽  
Karin N. Westlund

Thalamic intralaminar and medial nuclei participate mainly in affective and motivational aspects of pain processing. Unique to the present study were identification and characterization of spontaneously active neurons in the central lateral nucleus (CL) of the intralaminar thalamus, which were found to respond only to viscerally evoked noxious stimuli in animals under pentobarbital anesthesia. Responses to noxious colorectal distention, intrapancreatic bradykinin, intraperitoneal dilute acetic acid, and greater splanchnic nerve electrical stimulation were characterized. Electrophysiological recordings revealed activity in most CL neurons (93%) was excited (69%) or inhibited (31%) in response to noxious visceral stimulation of visceral nerves. Expression of c-Fos observed in CL nucleus after intensive visceral stimulation confirmed the activation. However, excited CL neurons did not have somatic fields, except in 3 of 43 (7%) CL neurons tested for responses to somatic stimulation (innocuous brush and noxious pinch). Intrathecal administration of morphine significantly reduced the increased responses of CL neurons to colorectal and pancreatic stimuli and was naloxone reversible. High-level thoracic midline dorsal column (DC) myelotomy also dramatically reduced responses, identifying the DC as a major route of travel from the spinal cord for CL input, in addition to input traveling ventromedially in the spinothalamic tract identified anatomically in a previous study. Spinal cord and lower brain stem cells providing input to medial thalamus were mapped after stereotaxic injections of a retrograde dye. These data combined with our previous data suggest that the CL nucleus is an important component of a medial visceral nociceptive system that may mediate attentional, affective, endocrine, motor, and autonomic responses to noxious visceral stimuli.


Sign in / Sign up

Export Citation Format

Share Document