Finite-sample properties of single-equation estimators under structural change

1992 ◽  
Vol 53 (1-3) ◽  
pp. 189-209
Author(s):  
Jiro Hodoshima
2017 ◽  
Vol 34 (5) ◽  
pp. 985-1017 ◽  
Author(s):  
Tianxiao Pang ◽  
Terence Tai-Leung Chong ◽  
Danna Zhang ◽  
Yanling Liang

This article revisits the asymptotic inference for nonstationary AR(1) models of Phillips and Magdalinos (2007a) by incorporating a structural change in the AR parameter at an unknown time k0. Consider the model ${y_t} = {\beta _1}{y_{t - 1}}I\{ t \le {k_0}\} + {\beta _2}{y_{t - 1}}I\{ t > {k_0}\} + {\varepsilon _t},t = 1,2, \ldots ,T$, where I{·} denotes the indicator function, one of ${\beta _1}$ and ${\beta _2}$ depends on the sample size T, and the other is equal to one. We examine four cases: Case (I): ${\beta _1} = {\beta _{1T}} = 1 - c/{k_T}$, ${\beta _2} = 1$; (II): ${\beta _1} = 1$, ${\beta _2} = {\beta _{2T}} = 1 - c/{k_T}$; (III): ${\beta _1} = 1$, ${\beta _2} = {\beta _{2T}} = 1 + c/{k_T}$; and case (IV): ${\beta _1} = {\beta _{1T}} = 1 + c/{k_T}$, ${\beta _2} = 1$, where c is a fixed positive constant, and kT is a sequence of positive constants increasing to ∞ such that kT = o(T). We derive the limiting distributions of the t-ratios of ${\beta _1}$ and ${\beta _2}$ and the least squares estimator of the change point for the cases above under some mild conditions. Monte Carlo simulations are conducted to examine the finite-sample properties of the estimators. Our theoretical findings are supported by the Monte Carlo simulations.


2010 ◽  
Vol 26 (6) ◽  
pp. 1761-1806 ◽  
Author(s):  
Liangjun Su ◽  
Halbert White

We consider two tests of structural change for partially linear time-series models. The first tests for structural change in the parametric component, based on the cumulative sums of gradients from a single semiparametric regression. The second tests for structural change in the parametric and nonparametric components simultaneously, based on the cumulative sums of weighted residuals from the same semiparametric regression. We derive the limiting distributions of both tests under the null hypothesis of no structural change and for sequences of local alternatives. We show that the tests are generally not asymptotically pivotal under the null but may be free of nuisance parameters asymptotically under further asymptotic stationarity conditions. Our tests thus complement the conventional instability tests for parametric models. To improve the finite-sample performance of our tests, we also propose a wild bootstrap version of our tests and justify its validity. Finally, we conduct a small set of Monte Carlo simulations to investigate the finite-sample properties of the tests.


1986 ◽  
Vol 2 (1) ◽  
pp. 66-74 ◽  
Author(s):  
G. H. Hillier ◽  
S. E. Satchell

Exact expressions are derived for the density function, variance, and kurtosis of a linear combination of the elements of a two-stage estimator for the coefficients in a single equation of a SUR system. The estimator is the first iterate in the iterative generalized least squares procedure described by Telser [14]. Our results generalize all previously known results for this estimator and, in certain special cases, also generalize some earlier exact results for Zellner's unrestricted covariance matrix estimator, to which it reduces in these special cases.


1992 ◽  
Vol 8 (4) ◽  
pp. 452-475 ◽  
Author(s):  
Jeffrey M. Wooldridge

A test for neglected nonlinearities in regression models is proposed. The test is of the Davidson-MacKinnon type against an increasingly rich set of non-nested alternatives, and is based on sieve estimation of the alternative model. For the case of a linear parametric model, the test statistic is shown to be asymptotically standard normal under the null, while rejecting with probability going to one if the linear model is misspecified. A small simulation study suggests that the test has adequate finite sample properties, but one must guard against over fitting the nonparametric alternative.


2013 ◽  
Vol 805-806 ◽  
pp. 1948-1951
Author(s):  
Tian Jin

The non-homogeneous Poisson model has been applied to various situations, including air pollution data. In this paper, we propose a kernel based nonparametric estimation for fitting the non-homogeneous Poisson process data. We show that our proposed estimator is-consistent and asymptotically normally distributed. We also study the finite-sample properties with a simulation study.


2015 ◽  
Vol 26 (4) ◽  
pp. 1912-1924 ◽  
Author(s):  
Jeong Youn Lim ◽  
Jong-Hyeon Jeong

We propose a cause-specific quantile residual life regression where the cause-specific quantile residual life, defined as the inverse of the cumulative incidence function of the residual life distribution of a specific type of events of interest conditional on a fixed time point, is log-linear in observable covariates. The proposed test statistic for the effects of prognostic factors does not involve estimation of the improper probability density function of the cause-specific residual life distribution under competing risks. The asymptotic distribution of the test statistic is derived. Simulation studies are performed to assess the finite sample properties of the proposed estimating equation and the test statistic. The proposed method is illustrated with a real dataset from a clinical trial on breast cancer.


Sign in / Sign up

Export Citation Format

Share Document