Phytochrome control of gene expression in radish seedlings I. Far-red light mediated stimulation of polyribosome formation and appearance of translatable mRNAs

1985 ◽  
Vol 37 (3) ◽  
pp. 227-234 ◽  
Author(s):  
Pierre Fourcroy ◽  
Claude Lambert ◽  
Dominique Klein-Eude
2014 ◽  
Vol 9 (3) ◽  
pp. 622-632 ◽  
Author(s):  
Konrad Müller ◽  
Matias D Zurbriggen ◽  
Wilfried Weber

Author(s):  
Rocio Ochoa-Fernandez ◽  
Sophia L. Samodelov ◽  
Simon M. Brandl ◽  
Elke Wehinger ◽  
Konrad Müller ◽  
...  

Author(s):  
Rocio Ochoa-Fernandez ◽  
Sophia L. Samodelov ◽  
Simon M. Brandl ◽  
Elke Wehinger ◽  
Konrad Müller ◽  
...  

2019 ◽  
Author(s):  
Shuo-Ting Yen ◽  
Kenneth A. Trimmer ◽  
Nader Aboul ◽  
Rachel D. Mullen ◽  
James C. Culver ◽  
...  

ABSTRACTPrecise manipulation of gene expression with temporal and spatial control is essential for functional studies and the determination of cell lineage relationships in complex biological systems. The Cre-loxP system is commonly used for gene manipulation at desired times and places. However, specificity is dependent on the availability of tissue- or cell-specific regulatory elements used in combination with Cre or CreER (tamoxifen-inducible). Here we present CreLite, an optogenetically-controlled Cre system using red light in developing zebrafish embryos. Cre activity is disabled by splitting Cre and fusing the inactive halves with the Arabidopsis thaliana red light-inducible binding partners, PhyB and PIF6. In addition, PhyB-PIF6 binding requires phycocyanobilin (PCB), providing an additional layer of control. Upon exposure to red light (660 nm) illumination, the PhyB-CreC and PIF6-CreN fusion proteins come together in the presence of PCB to restore Cre activity. Red-light exposure of transgenic zebrafish embryos harboring a Cre-dependent multi-color fluorescent protein reporter (ubi:zebrabow) injected with CreLite mRNAs and PCB, resulted in Cre activity as measured by the generation of multi-spectral cell labeling in various tissues, including heart, skeletal muscle and epithelium. We show that CreLite can be used for gene manipulations in whole embryos or small groups of cells at different stages of development. CreLite provides a novel optogenetic tool for precise temporal and spatial control of gene expression in zebrafish embryos that may also be useful in cell culture, ex vivo organ culture, and other animal models for developmental biology studies.


1996 ◽  
Vol 270 (5) ◽  
pp. R1005-R1012 ◽  
Author(s):  
S. E. Nizielski ◽  
C. Arizmendi ◽  
A. R. Shteyngarts ◽  
C. J. Farrell ◽  
J. E. Friedman

Prolonged exercise increases gluconeogenesis and activates transcription of the hepatic phosphoenol pyruvate carboxykinase (PEPCK) gene. The mechanisms that regulate the transcriptional control of gene expression depend on the interaction of nuclear proteins with distinct DNA sequences. To determine the involvement with the liver-enriched transcription factor CCAAT/enhancer binding protein beta (C/EMP-beta) in the induction of PEPCK gene transcription during prolonged exercise or adenosine 3',5'-cyclic monophosphate (cAMP) treatment, we examined C/EBP-beta mRNA and nuclear protein concentrations, as well as C/EBP-beta binding to the PEPCK promoter at the cAMP response element (CRE)(-87/-74) and P3I (-248/-230) binding sites. The requirement of these DNA elements for exercise-induced stimulation of PEPCK gene expression was established in transgenic mice carrying -460 +/- 73 of the PEPCK promoter with a mutation in either the CRE or P3I binding domain linked to a bovine growth hormone (bGH) reporter gene. In mice carrying the intact promoter, prolonged exercise increased the concentration of liver bGH mRNA by 510% compared with an increase of only 270% in mice with a mutation in either the CRE or P3I site. Exercise or cAMP injection induced a 7.5- and 13-fold increase in nuclear C/EBP-beta protein, respectively. In electrophoretic mobility shift assays (EMSA), the total quantity of nuclear proteins bound to either oligomer was not altered by treatment. However, addition of C/EBP-beta antisera in the EMSA in a supershift assay indicated that liver nuclear extracts from exercised or cAMP-treated mice demonstrated significantly greater DNA binding due to C/EBP-beta (CRE: control 44.4 +/- 2.3%, exercise 56.7% +/- 2.2%, cAMP 54.5 +/- 3.6% of total binding, P < 0.001; P3I: control 35.8 +/- 2.5%, exercise 64.9 +/- 1.9%, cAMP 57.3 +/- 2.5% of total binding, P < 0.001). Taken together, these results suggest that exercise and cAMP treatment induce a transient increase in C/EBP-beta that may contribute to the molecular mechanism for signaling PEPCK gene transcription and increasing gluconeogenesis during exercise.


Sign in / Sign up

Export Citation Format

Share Document