The equivalent resistance term in magnetic impedence spectroscopy

1992 ◽  
Vol 104-107 ◽  
pp. 395-396 ◽  
Author(s):  
R. Valenzuela ◽  
J.T.S. Irvine ◽  
A.R. West
Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1036
Author(s):  
Yunxia Li ◽  
Lei Li

A countershaft brake is used as a transmission brake (TB) to realize synchronous shifting by reducing the automated mechanical transmission (AMT) input shaft’s speed rapidly. This process is performed to reduce shifting time and improve shifting quality for heavy-duty vehicles equipped with AMT without synchronizer. To improve controlled synchronous shifting, the AMT input shaft’s equivalent resistance torque and the TB’s characteristic parameters are studied. An AMT dynamic model under neutral gear position is analyzed during the synchronous control interval. A dynamic model of the countershaft brake is discussed, and its control flow is given. The parameter identification method of the AMT input shaft’s equivalent resistance torque is given on the basis of the least squares algorithm. The parameter identification of the TB’s characteristic parameters is proposed on the basis of the recursive least squares method (RLSM). Experimental results show that the recursive estimations of the TB’s characteristic parameters under different duty cycles of the TB solenoid valve, including brake torque estimation, estimation accuracy, and braking intensity estimation, can be effectively estimated. The research provides some reliable evidence to further study the synchronous shifting control schedule for heavy-duty vehicles with AMT.


2021 ◽  
pp. 112926
Author(s):  
Peng Chen ◽  
Dong Li ◽  
Chen Zuo ◽  
Zengshan Li ◽  
Dezhi Chen

2020 ◽  
Vol 02 (01) ◽  
pp. 2050004
Author(s):  
Je-Young Choi

Several methods have been developed in order to solve electrical circuits consisting of resistors and an ideal voltage source. A correspondence with random walks avoids difficulties caused by choosing directions of currents and signs in potential differences. Starting from the random-walk method, we introduce a reduced transition matrix of the associated Markov chain whose dominant eigenvector alone determines the electric potentials at all nodes of the circuit and the equivalent resistance between the nodes connected to the terminals of the voltage source. Various means to find the eigenvector are developed from its definition. A few example circuits are solved in order to show the usefulness of the present approach.


Sign in / Sign up

Export Citation Format

Share Document