ion sources
Recently Published Documents


TOTAL DOCUMENTS

1842
(FIVE YEARS 112)

H-INDEX

53
(FIVE YEARS 5)

2022 ◽  
Vol 17 (01) ◽  
pp. C01050
Author(s):  
G. Torrisi ◽  
E. Naselli ◽  
L. Di Donato ◽  
G.S. Mauro ◽  
M. Mazzaglia ◽  
...  

Abstract Plasma diagnostics is a topic having a great impact on R&D in compact ion sources as well as in large fusion reactors. Towards this aim, non-invasive microwave diagnostics approaches, such as interferometric, polarimetric and microwave imaging profilometric techniques can allow obtaining volumetric, line-integrated or even space-resolved information about plasma electron density. Special probes can be also designed and implemented in order to characterize external and/or self-generated radio-waves in the plasmas. In particular, the design, construction and operation of a K-band microwave interferometry/polarimetry setup based on the Frequency-Modulated Continuous-Wave (FMCW) method at INFN-LNS will be described: this tool provides reliable measurements of the plasma density even in the extreme unfavorable wavelength-to-plasma scale ratio in plasma-based ion sources. A “frequency sweep” and a post-processing filtering method (for interferometry and polarimetry, respectively) were used to filter out the multipath contributions or cavity induced depolarizations in the detected signals. Besides this, the use of the aforementioned RF plasma-immersed probes will also be discussed, which allow measuring local E-fields and fast temporal response in order to characterize turbulent (through kinetic instabilities, cyclotron maser emission, etc.) vs. stable plasma regimes. An analysis based on wavelet transform applied to measurements of plasma radio self-emission in B-minimum and simple mirror traps will be presented. These tools and methods have the potential to be applied to plasma machines both in compact traps and large-size reactors with a proper scaling.


2021 ◽  
Vol 92 (12) ◽  
pp. 123510
Author(s):  
D. Wünderlich ◽  
S. Briefi ◽  
R. Friedl ◽  
U. Fantz

Physics World ◽  
2021 ◽  
Vol 34 (9) ◽  
pp. 33-36
Author(s):  
Felicia Green ◽  
Anna Simmonds

From improving the sensitivity of ion sources to boosting image resolution, Felicia Green and Anna Simmonds unveil the ambitious biological mass spectrometry programme at the Rosalind Franklin Institute to image molecular interactions in tissues.


Author(s):  
Sheng Hui Fu ◽  
Li Cheng Tian ◽  
Zhen- Feng Ding

Abstract Thus far, effects of secondary γ-electrons emitted from accelerator grids of gridded ion sources on ionization in discharge chambers have not been studied. The presence and induced processes of such secondary electrons in a microwave electron cyclotron resonance gridded ion source are confirmed by the consistent explanations of: (1) the observed jump of ion beam current (Ib) in case of a low-density plasma appearing at the chamber’s radial center due to the microwave skin effect; (2) the evolution of glow images recorded from the end-view of the ion source during the jump of Ib; (3) the over-large jump step of Ib with the increasing microwave power; (4) the pattern appearing on the temperature sticker exposed to the discharge operated in the regime where the arrayed energetic-electron beamlets are injected into the discharge chamber; (5) the measured step-increment in the voltage drop across the screen grid sheath. A positive feedback loop composed of involved processes are established to elucidate the underlying mechanism. Energetic γ-electrons from the accelerator grid and warm δ-electrons from the opposite antenna do not produce direct excitation and ionization, but they enhance the electrical confinement of cold electrons by elevating the voltage drop across the sheaths at the antenna and screen grid, thus leading to the jump of Ib. The energetic γ-electrons-based model can be also modified to explain abnormal results observed in the other gridded ion sources. Energetic γ-electrons from accelerator grids should be taken into account in understanding gridded ion sources.


2021 ◽  
pp. 112926
Author(s):  
Peng Chen ◽  
Dong Li ◽  
Chen Zuo ◽  
Zengshan Li ◽  
Dezhi Chen

2021 ◽  
Vol 9 ◽  
Author(s):  
U. Fantz ◽  
S. Briefi ◽  
A. Heiler ◽  
C. Wimmer ◽  
D. Wünderlich

The neutral beam injection systems for the international fusion experiment ITER used for heating, current drive, and diagnostic purposes are based on RF-driven negative hydrogen ion sources with a source area of roughly 0.9 m × 1.9 m. The sources operate at 0.3 Pa in hydrogen and in deuterium using a total available RF generator power of 800 kW per source at a frequency of 1 MHz. In order to fulfill the challenging requirements for ITER and beyond (like a DEMOnstration power plant, DEMO), worldwide developments are underway addressing the topics of plasma generation, ion extraction together with the issue of reducing and stabilizing the co-extracted electron current, and the beam properties. At the example of the activities at the ITER prototype source and the size scaling experiment ELISE, the present status and its challenges are summarized. The RF power transfer efficiency of these sources is only about 65% in maximum, giving significant room for improvements to relax the demands on the RF generator and ensure reliable operation. The plasma uniformity in front of the large extraction system is the result of plasma drifts. They have a huge impact on the nonuniformity of the co-extracted electrons and influence the ions and thus the beam properties as well. Understanding the optics of such large beams composed of hundreds of beamlets is a crucial task and is under continuous improvement. The main challenge, however, is still the fulfillment of the ITER requirements for deuterium, in particular, for long pulses. The management of caesium, which is evaporated into the source to generate sufficient negative ions by the surface conversion process, is one of the keys for stable and reliable operation.


2021 ◽  
Author(s):  
Н.В. Коненков ◽  
А.И. Иванов ◽  
В.А. Степанов

Для расчета статистического аксептанса КФМ использовался траекторный метод. Функция плотности вероятности захваченных фазовых точек предназначена для определения матриц вторых моментов. Элементы этих матриц описывают эллипсы захвата на X и Y фазовых плоскостях. Мерой согласования Гауссова пучка и аксептанса квадруполя служат площади эллипсов. При постоянных параметрах Гауссова пучка ионов эффективность согласования слабо уменьшается с увеличением разрешающей способности. Полученные данные будут полезны при проектировании современных источников ионов. To calculate the statistical QMF acceptance, an ion trajectory method has been used. The probability density functions of accepted points allow fitting the matrix of the second moments. The elements of these matrices describe the acceptance ellipses on phase X and Y planes. The measure of the coupling Gaussian beam and quadrupole acceptance is ellipse area. Colored distributions of the input and output coordinates and velocities are presented, in which the initial phases are marked with different colors. It was found that with increasing resolution, the statistical acceptance ellipses are nested into each other. At constant parameters of the input Gaussian beam, the matching efficiency weakly decreases with resolution. The obtained data will be useful for creation a new modern ion sources.


Sign in / Sign up

Export Citation Format

Share Document