Ethanol depresses inferior olive neurones and reduces Purkinje cell complex spike activity evoked by cerebral cortical stimulation

1984 ◽  
Vol 15 (6) ◽  
pp. 455-459 ◽  
Author(s):  
David P. Harris ◽  
John G. Sinclair
1999 ◽  
Vol 19 (7) ◽  
pp. 2728-2739 ◽  
Author(s):  
Eric J. Lang ◽  
Izumi Sugihara ◽  
John P. Welsh ◽  
Rodolfo Llinás

2003 ◽  
Vol 90 (4) ◽  
pp. 2349-2357 ◽  
Author(s):  
Daniel A. Nicholson ◽  
John H. Freeman

The development of synaptic interconnections between the cerebellum and inferior olive, the sole source of climbing fibers, could contribute to the ontogeny of certain forms of motor learning (e.g., eyeblink conditioning). Purkinje cell complex spikes are produced exclusively by climbing fibers and exhibit short- and long-latency activity in response to somatosensory stimulation. Previous studies have demonstrated that evoked short- and long-latency complex spikes generally occur on separate trials and that this response segregation is regulated by inhibitory feedback to the inferior olive. The present experiment tested the hypothesis that complex spikes evoked by periorbital stimulation are regulated by inhibitory feedback from the cerebellum and that this feedback develops between postnatal days (PND) 17 and 24. Recordings from individual Purkinje cell complex spikes in urethan-anesthetized rats indicated that the segregation of short- and long-latency evoked complex spike activity emerges between PND17 and PND24. In addition, infusion of picrotoxin, a GABAA-receptor antagonist, into the inferior olive abolished the response pattern segregation in PND24 rats, producing evoked complex spike response patterns similar to those characteristic of younger rats. These data support the view that cerebellar feedback to the inferior olive, which is exclusively inhibitory, undergoes substantial changes in the same developmental time window in which certain forms of motor learning emerge.


1995 ◽  
Vol 73 (4) ◽  
pp. 1329-1340 ◽  
Author(s):  
J. G. Keating ◽  
W. T. Thach

1. Complex spikes of cerebellar Purkinje cells recorded from awake, behaving monkeys were studied to determine the extent to which their discharge could be quantified as periodic. Three Rhesus monkeys were trained to perform up to five different tasks involving rotation of the wrist in relation to a visual cue. Complex spike activity was recorded during task performance and intertrial time. Interspike intervals were determined from the discharge of each of 89 Purkinje cells located throughout lobules IV, V, and VI. Autocorrelation and Fourier transform of the autocorrelation function were performed on the data. In addition, the activity from one cell was transformed so that the discharge occurred on the beat of a 10-Hz clock, and in a further transformation, on the beat of a noisy 10-Hz clock. These transformed data were then analyzed as described above. 2. Fourier transform of the autocorrelogram function of the data that had been transformed to a 10-Hz clock, and that of the noisy 10-Hz clock, both showed a prominent peak at 10 Hz. However, the autocorrelograms and the Fourier transforms of the autocorrelogram functions failed to reveal a prominent periodicity for the actual discharge of any of cells, at any frequency up to 100 Hz: the discharge appeared random with respect to the interspike interval. The discharge was not random with respect to behavior. Complex spike activity was commonly time locked to the start of wrist movement. We examined this discharge to see whether oscillatory discharge could be seen after alignment of the data on the start of wrist movement, or after alignment of the data on the complex spike occurring peri-start of wrist movement. No oscillation was seen for either alignment. 3. The inferior olive, which sends its climbing fibers to the cerebellum, has been implicated in such different activities as 1) pathological tremor of the soft palate, 2) physiological tremor, 3) the normal initiation of all bodily movement, and 4) motor learning. Previous work in pharmacologically or surgically treated animals has shown that, under some conditions, the discharge of these neurons is periodic and synchronous. This firing pattern has been interpreted to support a role in the first two activities. But measurements reported here in the awake monkey show just the opposite: the discharge is aperiodic to the extent of being random. As such, the inferior olive cannot be a "motor clock" in the general role that has been proposed.(ABSTRACT TRUNCATED AT 400 WORDS)


Author(s):  
Eric J. Lang ◽  
Tianyu Tang ◽  
Colleen Y. Suh ◽  
Jianqiang Xiao ◽  
Yuriy Kotsurovskyy ◽  
...  

1982 ◽  
Vol 60 (5) ◽  
pp. 610-614 ◽  
Author(s):  
J. G. Sinclair ◽  
G. F. Lo ◽  
D. P. Harris

Ethanol (1.5 g/kg i.v.) was found to decrease spontaneous complex spike (CS) activity in cerebellar Purkinje cells in urethane anaesthetized rats while not changing the threshold required to evoke a CS by juxtafastigial stimulation. Thus ethanol does not decrease CS activity by an action at the climbing fibre – Purkinje cell synapse. Tremor induced by harmaline (5 mg/kg i.v.) in unanaesthetized animals was markedly antagonized by ethanol (0.5–2.0 g/kg i.v.) in all animals tested. However, in nine urethane-anaesthetized animals, ethanol markedly reversed the effects of harmaline on Purkinje cells in only two cases and partially reversed the effects in another four cells. Thus, the depressant effects of ethanol on the inferior olive is not totally responsible for the blockade of the harmaline tremor but would account for the decrease in spontaneous CS activity.


Sign in / Sign up

Export Citation Format

Share Document