U.S. 4,665,109 Fibre reinforced materials

1987 ◽  
Vol 17 (9) ◽  
pp. 8
Keyword(s):  
Author(s):  
David J. Steigmann

This chapter develops the general constitutive equation for transversely isotropic, fiber-reinforced materials. Applications include composite materials and bio-elasticity.


2021 ◽  
Vol 30 ◽  
pp. 263498332199474
Author(s):  
Qiang Guo ◽  
Kai He ◽  
Hengyuan Xu ◽  
Youyi Wen

With the application of “ λ” type composite skin becoming more and more extensive and diversified, its precise forming technology is also widely concerned. This article mainly solves the quality problems of “ λ” type corner area, such as delamination dispersion and surface wrinkle, which exist in reality commonly in the manufacturing process. The prepreg is heated along the corner area of the tooling to solve the problem that prepreg is difficult to be compacted due to the large modulus of carbon fiber in “ λ” type corner area. Furthermore, two precompaction tests are creatively increased at 16 layers (middle layer) and 32 layers (last layer) for the thick structure, respectively, to ensure the compaction effect of the blank. In addition, combined with the characteristics of highly elastic rubber and carbon fiber-reinforced materials, a new type of soft mold structure with proper flexibility and good stiffness is proposed innovatively through the reasonable placement of carbon fiber-reinforced materials and the setting of exhaust holes according to the structure characteristics of “ λ” type root skin. Through further process verification, it is shown that the improved process has effectively solved the problems of wrinkles and internal delamination at the sharp corners of parts and realized zero-defect manufacturing of “ λ” type root skin for the first time.


1973 ◽  
Vol 40 (2) ◽  
pp. 518-522 ◽  
Author(s):  
G. C. Everstine ◽  
A. C. Pipkin

2021 ◽  
pp. 2150027
Author(s):  
Khalid Mohammed Khalifah

The aim of this study is to prepare composite nanomaterials and to improve some of their mechanical properties as a creep rate using nanoparticles that are prepared in the laboratory by ultrasound available using Impact Polystyrene (HIPS) and Polyethylene (HDPE) as matrix materials. Nanoclays are made of Bentonite-reinforced materials. This research studies the addition of nanoclays with thermos plastic polymers in weight fraction percentage (1%, 2%, 3% and 4%) and makes a comparison among them.


Sign in / Sign up

Export Citation Format

Share Document