The Effect of Creep Rate on Polymeric Composites Reinforced by Nanoclays and their Comparison

2021 ◽  
pp. 2150027
Author(s):  
Khalid Mohammed Khalifah

The aim of this study is to prepare composite nanomaterials and to improve some of their mechanical properties as a creep rate using nanoparticles that are prepared in the laboratory by ultrasound available using Impact Polystyrene (HIPS) and Polyethylene (HDPE) as matrix materials. Nanoclays are made of Bentonite-reinforced materials. This research studies the addition of nanoclays with thermos plastic polymers in weight fraction percentage (1%, 2%, 3% and 4%) and makes a comparison among them.

Author(s):  
S. Vinodh kumar ◽  
K. Prasanth ◽  
M. Prashanth ◽  
S. Prithivirajan ◽  
P. Anil Kumar

2015 ◽  
Vol 787 ◽  
pp. 568-572 ◽  
Author(s):  
A. Radha ◽  
K.R. Vijayakumar

Composite materials like Aluminium metal matrix composite is playing a very important role in manufacturing industries e.g. automobile and aerospace industries, due to their superior properties such as light weight, low density, high specific modulus, high fatigue strength etc., In this study Aluminium(Al 6061) is reinforced with Silicon Carbide particles and fabricated by Stir Casting Technique (vortex method). The MMC rectangular bars (samples) are prepared with Al6061 and SiC (28 µ size) as the reinforced particles by weight fraction from 0%, 5%, 10%, and 15% of SiC. The microstructure analysis and Mechanical properties like Tensile Strength, Vickers Hardness and Charpy Impact Strength were investigated on prepared specimens. It is observed that the properties are increased with increasing of reinforced specimens by weight fraction.


2018 ◽  
Vol 16 (1) ◽  
pp. 726-731 ◽  
Author(s):  
Tennur Gülşen Ünal ◽  
Ege Anıl Diler

AbstractThe effects of micro and nano sized reinforcement particles on microstructure and mechanical properties of aluminium alloy-based metal matrix composites were investigated in this study. AlSi9Cu3 alloy was reinforced with micro and nano sized ceramic reinforcement particles at different weight fractions by using a stir casting method. The mechanical tests (hardness, three point bending) were performed to determine the mechanical properties of AlSi9Cu3 alloy-based microcomposites (AMMCs) and nanocomposites (AMMNCs). The experimental results have shown that the size and weight fraction of reinforcement particles have a strong influence on the microstructure and the mechanical properties of AlSi9Cu3 alloy-based microcomposites and nanocomposites. The relative densities of all AMMC and AMMNC samples are lower than unreinforced AlSi9Cu3 alloy due to porosity formation with the increase of weight fraction of reinforcement particles. As weight fraction increases, hardness values of AMMCs and AMMNCs increase. Maximum flexural strength can be obtained at 3.5wt.% for the AMMC sample with microsized Al2O3 particles and at 2wt.% for the AMMNC sample with nano-sized Al2O3 particles. After the weight fractions exceed these values, flexural strengths of both AMMCs and AMMNCs decrease due to clustering of Al2O3 particles.


Materials ◽  
2003 ◽  
Author(s):  
Geun Hyung Kim ◽  
Daniel K. Moeller ◽  
Yuri M. Shkel

A solid composite having locally micro-tailored structure can be produced by curing liquid polymeric suspensions in an electric field. The redistribution effect of the field-induced forces exceeds the effect of centrifugation, presently employed to manufacture functionally graded materials. Moreover, unlike centrifugational sedimentation, one can electrically rearrange the inclusions in desired targeted areas. The applied electric field can be employed to produce a composite having uniformly oriented structure or only modify the material in selected regions. This technology enables polymeric composites to be locally micro-tailored for given design objectives. We discuss electrical and rheological inteactions in liquid suspensions. Relationships between microstructure and mechanical properties of the obtained functionally graded composites are presented.


2018 ◽  
Vol 877 ◽  
pp. 294-298 ◽  
Author(s):  
Kundan Patel ◽  
Jay Patel ◽  
Piyush Gohil ◽  
Vijaykumar Chaudhary

Composite materials play a vital role in many industrial applications. Researchers are working on fabrication of new composite materials worldwide to enhance the applicability of these materials. The present study aimed to investigate the effect of Nano clay loading as filler on the mechanical properties of the bamboo fiber yarn reinforced polyester composite. Five different types of composite specimen were prepared with Nano clay loadings of 0 to 4 % weight fraction using hand lay-up technique. It was observed that the composite sheet with 1 wt % nano clay content exhibited the optimized tensile and flexural strength. However the mechanical properties tend to decrease with addition of nano clay content from 2 to 4 wt %. In spite of that the values of mechanical properties with 2 and 3 wt % nano clay content is higher than 0 wt % nano clay content.


2021 ◽  
Author(s):  
Aliyu Yaro ◽  
Laminu Kuburi ◽  
Musa Abiodun Moshood

Abstract Polymeric materials are used in different industrial applications because they retain good environmental properties, low-cost, and easy to produce compared to conventional materials. This study investigated the effect of adding kaolin micro-filler (KF) on the mechanical properties of Luffa Fiber (LCF) reinforced polyester resin. Luffa cylindrica fiber treated with 5% NaOH, varied in weight fraction (5, 10, and 15%wt) was used to reinforce unsaturated polyester resin using hand lay-up method, whereas for the hybrid composite kaolin filler were kept constant at 6wt% fraction while the fibers varied as in the mono-reinforced composite. The samples were machined for mechanical and microstructural analysis. Analysis of the result revealed that the addition of kaolin has enhanced greatly the mechanical properties of Luffa-fibre based composites. The result reveal of the microstructure analysis, shows that there is an improvement in fiber-matrix adhesion.


SINERGI ◽  
2021 ◽  
Vol 25 (3) ◽  
pp. 361
Author(s):  
Muhamad Fitri ◽  
Shahruddin Mahzan ◽  
Imam Hidayat ◽  
Nurato Nurato

The development of composite materials is increasingly widespread, which require superior mechanical properties. From many studies, it is found that the mechanical properties of composite materials are influenced by various factors, including the reinforcement content, both in the form of fibers and particle powder. However, those studies have not investigated the effect of the hardener weight fraction on the mechanical properties of resin composite materials. Even though its function as a hardener is likely to affect its mechanical properties, it might obtain the optimum composition of the reinforcing content and hardener fraction to get the specific mechanical properties. This study examines the effect of hardener weight fraction combined with fiber powder content on mechanical properties of EPR-174 epoxy resin matrix composite and determines the optimum of Them. The research was conducted by testing a sample of composite matrix resin material reinforced with coconut fiber powder. The Powder content was made in 3 levels, i.e.: 6%, 8%, and 10%. While the hardener fraction of resin was made in 3 levels, i.e.: 0.4, 0.5, and 0.6. The test results showed that pure resin had the lowest impact strength of 1.37 kJ/m2. The specimen with a fiber powder content of 6% has the highest impact strength i.e.: 4.92 kJ/m2. The hardener fraction of 0.5 has the highest impact strength i.e.: 4.55 kJ/m2. The fiber powder content of 8% produced the highest shear strength i.e.: 1.00 MPa. Meanwhile, the hardener fraction of 0.6 has the highest shear strength i.e.: 2.03 MPa.


2018 ◽  
Vol 21 (1) ◽  
pp. 147 ◽  
Author(s):  
Sihama I. Salih ◽  
Qahtan A. Hamad ◽  
Safaa N. Abdul Jabbar ◽  
Najat H. Sabit

This work covers mixing of unsaturated polyester (un- polyester) with starch powders as polymer blends and study the effects of irradiation by UV-acceleration on mechanical properties of its. The unsaturated polyester was mixing by starch powders at particle size less than (45 µm) at selected weight fraction of (0, 0.5, 1, 1.5, 2, 2.5 and 3%). These properties involve ultimate tensile strength, modulus of elasticity, elongation percentage, flexural modulus, flexural strength, fracture toughness, impact strength and hardness. The results illustrate decrease in the ultimate tensile strength at and elongation percentage, while increasing modulus of elasticity, with increasing the weight ratio of starch powder to 3 % weight fraction, whereas the maximum value of hardness and flexural, impact properties happened at 1 % weight fraction for types of polymer blends.


Sign in / Sign up

Export Citation Format

Share Document