fatigue failure
Recently Published Documents


TOTAL DOCUMENTS

2269
(FIVE YEARS 449)

H-INDEX

54
(FIVE YEARS 9)

2022 ◽  
Author(s):  
Young Ho Seo

Abstract Cold forging dies are manufactured through the shrink fit process to withstand high pressure loads, but fatigue failure eventually occurs due to repeated compressive stresses. The life cycle until fatigue failure was defined as the limit life, and attempts were made to predict the die life based on finite element method (FEM). However, accurate prediction was impossible owing to uncontrollable environmental variables. Consequently, it is impossible to clearly determine the die replacement cycle, resulting in negative consequences such as poor quality, production delay, and cost increase. Various environmental factors affecting the prediction of die life cycle result in the increase or decrease of the forming load, which is an important variable that determines the die life cycle. In this study, a system for monitoring load data generated from forging facilities was developed based on a piezo sensor. In addition, the die life cycle was more accurately predicted by using the forming load data measured in real time, and a die life management system that can determine the die replacement cycle was applied to the automobile steering parts production line.


Author(s):  
Xiaohong Li ◽  
Qin Sun ◽  
Hongna Dui

Fatigue damage of a whole structure with multiple similar fatigue hazardous detail parts is unclear. This paper focuses on the concept of quantified fatigue damage for the structure with similar fatigue hazardous detail parts by using the probability method and fatigue failure probability of the severe load spectrum. The probability criterion and calculation method of equivalent damage with different load spectra were proposed. The fatigue life probability distribution of the severe load spectrum was analyzed, and the acceleration ratio was defined by the similar details number of fatigue cracking in combination with the fatigue failure probability characteristics of the severe load spectrum. The results show that there is good agreement between the similar details number range of fatigue cracking in two load spectra, which means they are considered to be equivalent. The ratio of the sum of two similar details number ranges is used as acceleration ratio to evaluate the severe load spectrum. The application of this study in the statistical sense of engineering structure fatigue failure is more convincing.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Hong-Chun Jiang ◽  
Yu-Ling He ◽  
Gui-Ji Tang ◽  
Xing-Hua Yuan

This paper comparatively studies the electromagnetic force and mechanical response of the end winding before and after 3 kinds of typical electromechanical faults in turbo-generator. The analytical expression of electromagnetic force of end winding is derived under the composite fault of static eccentricity and rotor interturn short circuit. Meanwhile, the three-dimensional transient finite element simulation is carried on, and the frequency composition and amplitude variation characteristics of the radial, axial, and tangential electromagnetic force are analyzed for the end windings under static eccentricity, rotor interturn short circuit, and composite fault. Therefore, it provides a reference for the vibration wear detection and electromagnetic force control of the end winding. Moreover, the maximum stress and deformation of different positions on the end involute are obtained. And the three-directional vibration acceleration characteristics of the end winding are further analyzed. Finally, the distribution law of winding fatigue failure and vibration wear is acquired, which lays a foundation for the reverse suppression of end winding fatigue failure and insulation wear.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Li Cui ◽  
Yin Su

Purpose Rolling bearings often cause engineering accidents due to early fatigue failure. The study of early fatigue failure mechanism and fatigue life prediction does not consider the integrity of the bearing surface. The purpose of this paper is to find new rolling contact fatigue (RCF) life model of rolling bearing. Design/methodology/approach An elastic-plastic finite element (FE) fatigue damage accumulation model based on continuous damage mechanics is established. Surface roughness, surface residual stress and surface hardness of bearing rollers are considered. The fatigue damage and cumulative plastic strain during RCF process are obtained. Mechanism of early fatigue failure of the bearing is studied. RCF life of the bearing under different surface roughness, hardness and residual stress is predicted. Findings To obtain a more accurate calculation result of bearing fatigue life, the bearing surface integrity parameters should be considered and the elastic-plastic FE fatigue damage accumulation model should be used. There exist the optimal surface parameters corresponding to the maximum RCF life. Originality/value The elastic-plastic FE fatigue damage accumulation model can be used to obtain the optimized surface integrity parameters in the design stage of bearing and is helpful for promote the development of RCF theory of rolling bearing.


Author(s):  
Xi Kang ◽  
Guangxiong Chen ◽  
Qi Zhu ◽  
Wenjuan Ren ◽  
Huanyun Dai

This paper studies the effect of wheel polygonalization and material properties on the fatigue failure of fastener clips in high-speed railway lines and puts forward the corresponding inhibition measures. Vibration frequencies excited by 24th-order wheel out-of-roundness (OOR) were analysed by on-site tests of the axle box vertical vibration acceleration. A finite element modelling method of polygon-shaped wheels was proposed, which was verified by comparing the field measurement with the dynamic simulation. The dynamic response of the fastener clip was simulated by using a rigid–flexible coupled model of the wheelset-track system. The effect of amplitudes as well as typical wavelengths of wheel OOR on the fracture of the clip was analysed based on the Miner fatigue damage accumulation ruler. The results show that when the wheelset ran at 237 km/h on the track, the 24th-order wheel OOR had no obvious effect on the Mises equivalent stress of the clip. When the amplitude of the 24th-order wheel OOR reached 0.225 mm and above, excited vibrations of about 1172 Hz were transmitted from the wheelset-rail system to the fastener systems, thus reducing the safe operating life of the clips. This phenomenon can be inhibited by setting a reasonable amplitude threshold for wheel re-profiling. Wheel eccentric wear (first-order OOR) and 12th-order OOR had lesser effects on the fatigue failure of the clip. The decrease of Poisson’s ratio or the increase of Young’s modulus of the material could cause the maximum Mises equivalent stress at the clip to increase, which might induce cracks, thus leading to the fracture of the clip. Therefore, during the production process, the Poisson’s ratio and Young’s modulus of fastener clips should be strictly controlled to ensure that they are within the permitted range.


2021 ◽  
Vol 23 (4) ◽  
pp. 125-139
Author(s):  
Kirill Zakharchenko ◽  
◽  
Vladimir Kapustin ◽  
Alexey Larichkin ◽  
◽  
...  

Introduction. The strength of construction materials when used under cyclic loads is of great importance in design engineering. A significant number of factors that affect the fatigue resistance have predetermined the creation of numerous methods that consider such influence. Nondestructive methods that are based on the connection of the physical degradation of material with strain properties enable evaluating experimentally the fatigue properties of materials. Purpose of study: the analysis of the processes of energy dissipation and strain accumulation during the inelastic cyclic strain of samples, using the VT6 (Ti-6Al-4V) titanium alloy and the D16 (Al-Cu-Mg) aluminum alloy before and after the technological impact. The work experimentally investigates the physical processes of degradation of the VT6 and D16 alloy samples that accompany the process of fatigue failure in materials with homogeneous and inhomogeneous stress-strain states in the concentrator (in the form of a hole and a weld). Typical modes are used to reach the fatigue testing that determine the critical stress in a material sample – the stress at which physical properties (temperature, strain) change without reaching the fatigue failure of samples. Critical stress amplitudes in the cycle, based on the data obtained during the experiment and the results of mathematical simulation, are compared. The effect of stress concentrators on critical loads that a detail can withstand after a unit operation is estimated by the finite-element method (FEM). As a result, the effect of the operational and technological factors on critical stress determined by strain and temperature is estimated. Comparative tests of the VT6 and D16 alloy samples with and without stress concentrators showed that the amplitudes of critical stress decrease by more than 30% in comparison with the ones that are without stress concentrators. The low-cycle fatigue tests of the D16 alloy samples are carried out. Mathematical simulation of the cyclic strain of the samples is carried out using MSC.Marc package. The results of the cyclic loading tests, which show that the characteristics of the technological process reduce the amplitudes of the critical stress of the VT6 and D16 alloys and affect the fatigue properties of the D16 aluminum alloy, are discussed. Mathematical simulation corresponded positively to the experimental data. Such correspondence indicates the possibility of conducting qualitative numerical assessments of the beginning of the inelastic strain accumulation process in structures with stress concentrators under the cyclic stress and the increasing stress amplitude, using the typical sample made of hardening elastoplastic material.


Sign in / Sign up

Export Citation Format

Share Document