The release of labeledl-glutamic acid from rat neostriatum In vivo following stimulation of frontal cortex

Neuroscience ◽  
1980 ◽  
Vol 5 (12) ◽  
pp. 2151-2154 ◽  
Author(s):  
O.V. Godukhin ◽  
A.D. Zharikova ◽  
V.I. Novoselov

1981 ◽  
Vol 224 (2) ◽  
pp. 327-336 ◽  
Author(s):  
M. Wolfensberger ◽  
J.C. Reubi ◽  
V. <Canzˇek ◽  
U. Redweik ◽  
H.Ch. Curtius ◽  
...  


Author(s):  
Isabel Valverde ◽  
David Vicent ◽  
Marisa L. Villanueva-Peñacarrillo ◽  
Francine Malaisse-Lagae ◽  
Willy J. Malaisse




1988 ◽  
Vol 117 (4_Suppl) ◽  
pp. S199-S200
Author(s):  
E. DIETRICH ◽  
K. RENTELMANN ◽  
W. WUTTKE


Diabetes ◽  
2007 ◽  
Vol 56 (4) ◽  
pp. 1087-1094 ◽  
Author(s):  
M. G. Latour ◽  
T. Alquier ◽  
E. Oseid ◽  
C. Tremblay ◽  
T. L. Jetton ◽  
...  


1989 ◽  
Vol 16 (4) ◽  
pp. 344-352
Author(s):  
Paul J. Dierickx

Glutamic acid (GA) content was measured in cultured Hep G2 cells, after treatment of the cells with test compounds. The results with 37 chemicals were compared with their respective rabbit eye irritation data, of which 17 were determined according to the OECD test, and the other 20 in range-finding studies. The chemicals were mainly organic solvents (alcohols, esters, amines, acids and others). The xenobiotics were applied to the cells for 4 hours at 5 different concentrations. The cells were then incubated for 15 minutes with tritiated GA. GA uptake inhibition was measured by liquid scintillation counting, and the results were expressed as the GI50 value, which is the concentration of test compound required to induce a 50% reduction in GA uptake. A linear correlation coefficient r = 0.66 was found between the log GI50 and the mean corneal opacity scores. This value is comparable to that obtained in total protein and uridine uptake inhibition studies. However, r = 0.81 was found when the log GI50 was compared with range-finding scores, indicating that a closer relationship exists between cytotoxicity and the latter.



1979 ◽  
Author(s):  
K. L. Kellar ◽  
B. L. Evatt ◽  
C. R. McGrath ◽  
R. B. Ramsey

Liquid cultures of bone marrow cells enriched for megakaryocytes were assayed for incorporation of 3H-thymidine (3H-TdR) into acid-precipitable cell digests to determine the effect of thrombopoietin on DNA synthesis. As previously described, thrombopoietin was prepared by ammonium sulfate fractionation of pooled plasma obtained from thrombocytopenic rabbits. A control fraction was prepared from normal rabbit plasma. The thrombopoietic activity of these fractions was determined in vivo with normal rabbits as assay animals and the rate of incorporation of 75Se-selenomethionine into newly formed platelets as an index of thrombopoietic activity of the infused material. Guinea pig megakaryocytes were purified using bovine serum albumin gradients. Bone marrow cultures containing 1.5-3.0x104 cells and 31%-71% megakaryocytes were incubated 18 h in modified Dulbecco’s MEM containing 10% of the concentrated plasma fractions from either thrombocytopenic or normal rabbits. In other control cultures, 0.9% NaCl was substituted for the plasma fractions. 3H-TdR incorporation was measured after cells were incubated for 3 h with 1 μCi/ml. The protein fraction containing thrombopoietin-stimulating activity caused a 25%-31% increase in 3H-TdR incorporation over that in cultures which were incubated with the similar fraction from normal plasma and a 29% increase over the activity in control cultures to which 0.9% NaCl had been added. These data suggest that thrombopoietin stimulates DNA synthesis in megakaryocytes and that this tecnique may be useful in assaying thrombopoietin in vitro.



Sign in / Sign up

Export Citation Format

Share Document