g2 cells
Recently Published Documents


TOTAL DOCUMENTS

519
(FIVE YEARS 25)

H-INDEX

50
(FIVE YEARS 4)

Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 166
Author(s):  
Lucie Dobešová ◽  
Theresa Gier ◽  
Olga Kopečná ◽  
Eva Pagáčová ◽  
Tomáš Vičar ◽  
...  

(1) Background: In oncology research, a long-standing discussion exists about pros and cons of metal nanoparticle-enhanced radiotherapy and real mechanisms behind the tumor cell response to irradiation (IR) in presence of gold nanoparticles (GNPs). A better understanding of this response is, however, necessary to develop more efficient and safety nanoparticle (NP) types designed to disturb specific processes in tumor cells. (2) Aims and Methods: We combined 3D confocal microscopy and super-resolution single molecule localization microscopy (SMLM) to analyze, at the multiscale, the early and late effects of 10 nm-GNPs on DNA double strand break (DSB) induction and repair in tumor cells exposed to different doses of photonic low-LET (linear energy transfer) radiation. The results were correlated to different aspects of short and long-term cell viability. SkBr3 breast cancer cells (selected for the highest incidence of this cancer type among all cancers in women, and because most breast tumors are treated with IR) were incubated with low concentrations of GNPs and irradiated with 60Co γ-rays or 6 MV X-rays. In numerous post-irradiation (PI) times, ranging from 0.5 to 24 h PI, the cells were spatially (3D) fixed and labeled with specific antibodies against γH2AX, 53BP1 and H3K9me3. The extent of DSB induction, multi-parametric micro- and nano-morphology of γH2AX and 53BP1 repair foci, DSB repair kinetics, persistence of unrepaired DSBs, nanoscale clustering of γH2AX and nanoscale (hetero)chromatin re-organization were measured by means of the mentioned microscopy techniques in dependence of radiation dose and GNP concentration. (3) Results: The number of γH2AX/53BP1 signals increased after IR and an additional increase was observed in GNP-treated (GNP(+)) cells compared to untreated controls. However, this phenomenon reflected slight expansion of the G2-phase cell subpopulation in irradiated GNP(+) specimens instead of enhanced DNA damage induction by GNPs. This statement is further supported by some micro- and nano-morphological parameters of γH2AX/53BP1 foci, which slightly differed for cells irradiated in absence or presence of GNPs. At the nanoscale, Ripley’s distance frequency analysis of SMLM signal coordinate matrices also revealed relaxation of heterochromatin (H3K9me3) clusters upon IR. These changes were more prominent in presence of GNPs. The slight expansion of radiosensitive G2 cells correlated with mostly insignificant but systematic decrease in post-irradiation survival of GNP(+) cells. Interestingly, low GNP concentrations accelerated DSB repair kinetics; however, the numbers of persistent γH2AX/53BP1 repair foci were slightly increased in GNP(+) cells. (4) Conclusions: Low concentrations of 10-nm GNPs enhanced the G2/M cell cycle arrest and the proportion of radiosensitive G2 cells, but not the extent of DNA damage induction. GNPs also accelerated DSB repair kinetics and slightly increased presence of unrepaired γH2AX/53BP1 foci at 24 h PI. GNP-mediated cell effects correlated with slight radiosensitization of GNP(+) specimens, significant only for the highest radiation dose tested (4 Gy).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ewa Kilanczyk ◽  
Jesus M. Banales ◽  
Ewelina Jurewicz ◽  
Piotr Milkiewicz ◽  
Malgorzata Milkiewicz

AbstractThe E2 component of the mitochondrial pyruvate dehydrogenase complex (PDC) is the key autoantigen in primary biliary cholangitis (PBC) and STAT3 is an inflammatory modulator that participates in the pathogenesis of many liver diseases. This study investigated whether PDC-E2 interacts with STAT3 in human cholangiocytes (NHC) and hepatocytes (Hep-G2) under cholestatic conditions induced by glyco-chenodeoxycholic acid (GCDC). GCDC induced PDC-E2 expression in the cytoplasmic and nuclear fraction of NHC, whereas in Hep-G2 cells PDC-E2 expression was induced only in the cytoplasmic fraction. GCDC-treatment stimulated phosphorylation of STAT3 in the cytoplasmic fraction of NHC. siRNA-mediated gene silencing of PDC-E2 reduced the expression of pY-STAT3 in NHC but not in HepG2 cells. Immunoprecipitation and a proximity ligation assay clearly demonstrated that GCDC enhanced pY-STAT3 binding to PDC-E2 in the nuclear and cytoplasmic fraction of NHC cells. Staining with Mitotracker revealed mitochondrial co-localization of PDC-E2/pS-STAT3 complexes in NHC and Hep-G2 cells. In cirrhotic PBC livers the higher expression of both PDC-E2 and pY-STAT3 was observed. The immunoblot analysis demonstrated the occurrence of double bands of PDC-E2 protein in control livers, which was associated with a lower expression of pY-STAT3. Our data indicate the interaction between PDC-E2 and phosphorylated STAT3 under cholestatic conditions, which may play a role in the development of PBC.


Mutagenesis ◽  
2021 ◽  
Author(s):  
Xihan Guo ◽  
Chunlei Wang ◽  
Weimeng Tian ◽  
Xueqin Dai ◽  
Juan Ni ◽  
...  

Abstract Bulbus of Fritillaria cirrhosa D. Don (BFC), an outstanding antitussive and expectorant herbal drug used in China and many other countries, has potential but less understood genotoxicity. Previously, we have reported that aqueous extract of BFC compromised the spindle assembly checkpoint and cytokinesis in NCM460 cells. Here, we found that one remarkable observation in BFC-treated NCM460 cells was multipolar mitosis, a trait classically compromises the fidelity of chromosome segregation. More detailed investigation revealed that BFC induced spindle multipolarity in metaphases and ana-telophases in a dose- and time-dependent manner, suggesting BFC-induced multipolar spindle conformation was not transient. The frequency of multipolar metaphase correlated well to that of multipolar ana-telophases, indicating that BFC-induced multipolar metaphases often persisted through anaphase. Unexpectedly, BFC blocked the proliferation of binucleated cells, suggesting spindle multipolarity was not downstream of BFC-induced cytokinesis failure. Exposure of BFC to early mitotic cells, rather than S/G2 cells, contributed greatly to spindle multipolarity, indicating BFC might disrupt centrosome integrity rather than induce centrosome overduplication. The immunofluorescence results showed that the centrosomes were severely fragmented by a short-term treatment of BFC and the extent of centrosome fragmentation in early mitotic cells was larger than this in S/G2 cells. Consistently, several genes (e.g., p53, Rb Centrin-2, Plk-4, Plk-1 and Aurora-A) involved in regulating centrosome integrity were significantly deregulated by BFC. Together, our results suggest that BFC causes multipolar spindles primarily by inducing centrosome fragmentation. Coupling these results to our previous observations, we recommend the risk/benefit ratio should be considered in practical use of BFC.


2020 ◽  
Vol 15 (11) ◽  
pp. 1934578X2097455
Author(s):  
Thi Kieu Trang Phan ◽  
Toan Quoc Tran ◽  
Dung Thuy Nguyen Pham ◽  
Duong Thanh Nguyen

The pericarp of Garcinia mangostana L. is a rich source of α-mangostin, which exhibits a wide range of pharmacological and biological activities. However, clinical use of this compound is limited due to its low water solubility. Therefore, its formulation with various delivery systems has been developed. In the present study, α-mangostin was isolated from G. mangostana pericarp extract and loaded onto newly synthesized liposomes. The system was evaluated for in vitro drug release at pH 5.5 and 7.4 during 96 hours of experiment, followed by cytotoxicity measurement against Hep-G2 cells. α-Mangostin was obtained in a high yield (1.86%) and its chemical structure was confirmed using nuclear magnetic resonance and Fourier-transform infrared spectroscopy. The compound was then loaded onto liposomes with relatively high efficiency (55.3% ± 2.3%). The compound was released in a sustained manner and exhibited significant cytotoxic activity against Hep-G2 cells. The present study provides important insights into liposome applications for α-mangostin delivery, thus improving the compound’s limitations and enabling further in vivo studies on its safety and efficacy.


2020 ◽  
Vol 14 (4) ◽  
pp. 156-166
Author(s):  
Razack Osseni ◽  
Serge Moukha ◽  
Habib Ganfon ◽  
Théophile Mobio ◽  
Pascale Dozolme ◽  
...  

Pharmaceutics ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 876
Author(s):  
Seulgi Lee ◽  
Su Jeong Song ◽  
Jeil Lee ◽  
Tai Hwan Ha ◽  
Joon Sig Choi

In recent decades, several types of anticancer drugs that inhibit cancer cell growth and cause cell death have been developed for chemotherapeutic application. However, these agents are usually associated with side effects resulting from nonspecific delivery, which may induce cytotoxicity in healthy cells. To reduce the nonspecific delivery issue, nanoparticles have been successfully used for the delivery of anticancer drugs to specific target sites. In this study, a functional polymeric lipid, PEG-GLFG-K(C16)2 (PEG-GLFG, polyethylene glycol-Gly-Leu-Phe-Gly-Lys(C16)2), was synthesized to enable controlled anticancer drug delivery using cathepsin B enzyme-responsive liposomes. The liposomes composed of PEG-GLFG/DOTAP (1,2-dioleoyl-3-trimethylammonium-propane (chloride salt))/DPPC (dipalmitoylphosphatidylcholine)/cholesterol were prepared and characterized at various ratios. The GLFG liposomes formed were stable liposomes and were degraded when acted upon by cathepsin B enzyme. Doxorubicin (Dox) loaded GLFG liposomes (GLFG/Dox) were observed to exert an effective anticancer effect on Hep G2 cells in vitro and inhibit cancer cell proliferation in a zebrafish model.


Author(s):  
Amirul Nazhan Ilias ◽  
Hazilawati Hamzah ◽  
Intan Safinar Ismail ◽  
Mokrish Ajat

As of today, no literature has been reported on the efficacy of stevia on lipid regulations conducted in vitro. Thus, the current study was focusing on the potential of Stevia rebaudiana bertoni as an anti-hypercholesterolemia substitute in limiting the de novo cholesterol synthesis in Hep-G2 cell line. The cytotoxicity and lipid internalization effects of stevia on Hep-G2 cells were assessed quantitatively and qualitatively in this study. As evaluated by MTT assay, commercialized stevia (0.5-20.0 mg/ml) and stevioside (1.0-10 µM) inhibited Hep-G2 cells viability in a dose-dependent manner for 24 hours. IC50 was detected at 8.68 mg/ml (commercialized stevia) and 10.91 µM (stevioside). From the assay, suitable concentrations were chosen to study the effect of stevia on cholesterol internalization in Hep-G2 cells supplemented with exogenous lipids. Cholesterol quantification assay revealed that high concentration commercialized stevia and stevioside promoted significant cholesterol internalized in Hep-G2 cells as compared to simvastatin. Finally, immunofluorescent microscopy assessment was done to qualitatively observe the formation of lipid droplets and low-density lipoprotein receptor in relation to total cholesterol extracted. The microphotographs of immunofluorescent microscopy were in parallel to results obtained from the cholesterol quantification assay which further revealed the effect of stevia as a potential anti-hypercholesterolemia agent.


Sign in / Sign up

Export Citation Format

Share Document