Immunocytochemical studies on the basal ganglia and substantia nigra in Parkinson's disease and Huntington's chorea

Neuroscience ◽  
1988 ◽  
Vol 25 (2) ◽  
pp. 419-438 ◽  
Author(s):  
C.M. Waters ◽  
R. Peck ◽  
M. Rossor ◽  
G.P. Reynolds ◽  
S.P. Hunt
2020 ◽  
Author(s):  
Shahan Mamoor

Parkinson’s Disease (PD) is characterized by loss of dopaminergic neurons in the substantia nigra of the basal ganglia (1). We mined published microarray datasets (2, 3) to identify genes whose expression was most different in the substantial nigra of patients with PD as compared to that of non-affected patients. We identified significant changes in expression of the gene encoding autophagin-3 (ATG4C) in the substantia nigra of patients with PD.


2019 ◽  
Vol 11 (2) ◽  
pp. 30-36
Author(s):  
A. G. Trufanov ◽  
A. A. Yurin ◽  
A. B. Buriak ◽  
S. A. Sandalov ◽  
M. M. Odinak ◽  
...  

Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease and the first one among the nosological entities of parkinsonism. Susceptibility-weighted imaging (SWI), magnetic resonance imaging (MRI) pulse sequence, which allows the in vivo estimation of the values of iron deposition in different areas of the brain, is a potential technique for the early diagnosis of PD and for the study of the pathogenesis of its complications.Objective: to compare the values of iron deposition in the basal ganglia in Stages II and III PD and to determine the relationship of clinical findings to the level of iron deposition according to the SWI findings.Patients and methods. Twenty-four patients with Hoehn and Yahr Stages II (n=24) and III (n=12) PD were examined. All the patients underwent brain MRI on a Siemens TrioTim (3T) MRI scanner by using pulse sequences T1, T2, SWI and subsequently quantifying the iron deposition (SPIN software). The accumulation of iron is visualized as an area of reduced signal intensity on SWI, and its estimation in accordance with the SPIN program has accordingly a smaller value. The regions of interest on both sides were the dentate nucleus, substantia nigra, red nucleus, putamen, globus pallidus, and head of the caudate nucleus. The examination protocol also included tests using the following scales: the Unified Parkinson's Disease Rating Scale (UPDRS), the Mini-Mental State Examination (MMSE), Frontal Assessment Batter (FAB), Freezing of Gait (FOG), Gait and Balance Scale (GABS), the Epworth Daytime Sleepiness Scale, the Parkinson's Disease Quality of Life Questionnaire (PDQ), the Beck Depression Inventory, and the Clock-Drawing Test.Results and discussion. The investigators found significant (p<0.05) correlations between the clinical picture and the level of iron deposition in the regions of interest in patients with Stage II PD: FOG – left caudate nucleus (r=-0.94); GABS – left caudate nucleus (r=-0.94); and in patients with stage III of the disease: UPDRS (full) – left red nucleus (r=-0.82), right globus pallidus (r=-0,80), left putamen (r=-0,96); UPDRS (Section 2) – left red nucleus (r=-0.77), left globus pallidus (r=-0.84); UPDRS (Section 3) – right putamen (r=-0,85), right globus pallidus (r=-0.78), left globus pallidus (r=-0,92); FOG – left globus pallidus (r=-0.81); GABS – left red nucleus (r=-0.96), left putamen (r=0.82), right putamen (r=-0.89), left globus pallidus (r=-0.82), right globus pallidus (r=-0.85), left caudate nucleus (r=-0.82), right caudate nucleus (r=-0.89); Beck Depression Inventory – right substantia nigra (r=-0.82).Conclusion. SWI measurement of the values of iron deposition in the structures of the extrapyramidal system in PD provides an additional insight into the pathological processes occurring in them.


Author(s):  
Mark Guttman

ABSTRACT:The study of neurotransmitter receptors aids in the understanding of the normal anatomy, pharmacology, therapeutics and pathophysiology of disease processes involving the basal ganglia. Receptors may be studied in vitro by homogenate binding experiments, enzyme analysis or quantitative autoradiography and in vivo with positron emission tomography. In the substantia nigra (SN), receptors have been identified for somatostatin, neurotensin, substance P, glycine, benzodiazepine and GABA, opiates, dopamine, angiotensin converting enzyme (ACE) and serotonin. The striatum has receptors for dopamine, GABA and benzodiazepines, acetylcholine, opiates, substance P, glutamate and cholecystokinin. GABA and benzodiazepine receptors are also located in the globus pallidus. In Parkinson's disease, striatal dopamine D-2 receptors are elevated in patients that have not received L-DOPA therapy. This supersensitivity is reversed with agonist therapy. Muscarinic binding to cholinergic receptors seems to correlate with dopamine receptors. Delta opiate receptors are increased in the caudate and mu binding is reduced in the striatum. In the SN of patients with Parkinson's disease, there is reduced binding of somatostatin, neurotensin, mu and kappa opiates, benzodiazepine and GABA and glycine. In Huntington's disease, there is reduced binding of GABA and benzodiazepines, dopamine, acetylcholine, glutamate and CCK. There is increased binding of GABA in both the SN and globus pallidus. Glycine binding is increased in the substantia nigra and ACE is reduced.


2020 ◽  
Author(s):  
Shahan Mamoor

Parkinson’s Disease (PD) is characterized by loss of dopaminergic neurons in the substantia nigra of the basal ganglia (1). We mined published and public microarray datasets (2, 3) to identify genes whose expression was most different in the substantial nigra of patients with PD as compared to that of non-affected patients. We identified significant changes in expression of the gene encoding the long intergenic non-coding RNA LINC00643 in the substantia nigra of patients with PD.


2020 ◽  
Author(s):  
Shahan Mamoor

Parkinson’s Disease (PD) is characterized by loss of dopaminergic neurons in the substantia nigra of the basal ganglia (1). We mined published and public microarray (2, 3) datasets to identify genes whose expression was most different in the brains of patients with PD as compared to that of non-affected patients. We identified significant changes in expression of the gene encoding the cyclin-dependent kinase CDK6 in the substantia nigra of patients with PD.


2020 ◽  
Author(s):  
Shahan Mamoor

Parkinson’s Disease (PD) is characterized by loss of dopaminergic neurons in the substantia nigra of the basal ganglia (1). We mined published and public microarray (2, 3) datasets to identify genes whose expression was most different in the brains of patients with PD as compared to that of non-affected patients. We identified significant changes in expression of the gene encoding the transcription factor ID2 in the substantia nigra of patients with PD.


2020 ◽  
Author(s):  
Shahan Mamoor

Parkinson’s Disease (PD) is characterized by loss of dopaminergic neurons in the substantia nigra of the basal ganglia (1). We mined published and public microarray datasets (2, 3, 4) to identify genes whose expression was most different in the substantial nigra of patients with PD as compared to that of non-affected patients. We identified significant changes in expression of open reading frame 18 on chromosome 54 (C18ORF54) in the substantia nigra of patients with PD.


Sign in / Sign up

Export Citation Format

Share Document