dopaminergic neurons
Recently Published Documents


TOTAL DOCUMENTS

4135
(FIVE YEARS 921)

H-INDEX

156
(FIVE YEARS 14)

2022 ◽  
Vol 23 (2) ◽  
pp. 845
Author(s):  
Lulu Tian ◽  
Murad Al-Nusaif ◽  
Xi Chen ◽  
Song Li ◽  
Weidong Le

The meso-diencephalic dopaminergic (mdDA) neurons regulate various critical processes in the mammalian nervous system, including voluntary movement and a wide range of behaviors such as mood, reward, addiction, and stress. mdDA neuronal loss is linked with one of the most prominent human movement neurological disorders, Parkinson’s disease (PD). How these cells die and regenerate are two of the most hotly debated PD research topics. As for the latter, it has been long known that a series of transcription factors (TFs) involves the development of mdDA neurons, specifying cell types and controlling developmental patterns. In vitro and in vivo, TFs regulate the expression of tyrosine hydroxylase, a dopamine transporter, vesicular monoamine transporter 2, and L-aromatic amino acid decarboxylase, all of which are critical for dopamine synthesis and transport in dopaminergic neurons (DA neurons). In this review, we encapsulate the molecular mechanism of TFs underlying embryonic growth and maturation of mdDA neurons and update achievements on dopaminergic cell therapy dependent on knowledge of TFs in mdDA neuronal development. We believe that a deeper understanding of the extrinsic and intrinsic factors that influence DA neurons’ fate and development in the midbrain could lead to a better strategy for PD cell therapy.


2022 ◽  
Vol 15 ◽  
Author(s):  
Xin Yuan ◽  
Yingxu Yang ◽  
Danhao Xia ◽  
Lanxia Meng ◽  
Mingyang He ◽  
...  

Silica nanoparticles (SiO2 NPs) are increasingly investigated for their potential in drug delivery systems. However, the neurotoxicity of SiO2 NPs remains to be fully clarified. Previously SiO2 NPs have been reported to be detected in the central nervous system, especially in the dopaminergic neurons which are deeply involved in Parkinson’s disease (PD). In this article, we characterized the effects of SiO2 NPs on inducing PD-like pathology both in vitro and in vivo. Results showed that SiO2 NPs promote more severe hyperphosphorylation and aggregation of α-synuclein, mitochondria impairment, oxidative stress, autophagy dysfunction, and neuronal apoptosis in the α-Syn A53T transgenic mice intranasally administrated with SiO2 NPs compared with the control group. Our findings provide new evidence supporting that SiO2 NPs exposure might have a strong capability of promoting the initiation and development of PD.


2022 ◽  
Author(s):  
Min Hyung Seo ◽  
Sujung Yeo

Abstract Parkinson’s disease (PD) is known as the second most common neurodegenerative disease, which is caused by destruction of dopaminergic neurons in the substantia nigra (SN) of the brain; however, the reason for the death of dopaminergic neurons remains unclear. An increase in α-synuclein (α-syn) is considered an important factor in the pathogenesis of PD. In the current study, we investigated the association between PD and serine/arginine-rich protein specific kinase 3 (Srpk3) in MPTP-induced parkinsonism mice model and in SH-SY5Y cells treated with MPP+. Srpk3 expression was significantly downregulated, while tyrosine hydroxylase (TH) decreased and α-synuclein (α-syn) increased after 4 weeks of MPTP intoxication treatment. Dopaminergic cell reduction and α-syn increase were demonstrated by inhibiting Srpk3 expression by siRNA in SH-SY5Y cells. Moreover, a decrease in Srpk3 expression upon siRNA treatment promoted dopaminergic cell reduction and α-syn increase in SH-SY5Y cells treated with MPP+. These results suggest that the decrease in Srpk3 expression due to Srpk3 siRNA caused both a decrease in TH and an increase in α-syn. This raises new possibilities for studying how Srpk3 controls dopaminergic cells and α-syn expression, which may be related to the pathogenesis of PD. Our results provide an avenue for understanding the role of Srpk3 during dopaminergic cell loss and α-syn increase in the SN. Furthermore, this study could support a therapeutic possibility for PD in that the maintenance of Srpk3 expression inhibited dopaminergic cell reduction.


2022 ◽  
Author(s):  
Xiumei Liu ◽  
Xueming Wang ◽  
Xiaoling Zhang ◽  
Aihua Cao

Abstract An important mechanism of Tic disorder (TD) is dysfunction in the dopamine (DA) system. Our pilot observation found the expression of Syntaxin 1A (STX1A), a presynaptic SNARE complex, changed in the striatum of TD animals. The present study aimed to clarify the biological role of striatal STX1A in the pathological state of TD and the specific mechanism of its regulation of the dopaminergic system. The TD rat model was established using iminodipropionitrile (IDPN). Adenovirus was used to modulate the expression of STX1A and dopamine transporter (DAT) in vivo and vitro. Primary culture of striatal dopaminergic neurons was performed for in-vitro observation of the DA reuptake, CO-IP analysis of the interaction between STX1A and DAT. First, using immunofluorescence staining, Western blotting, and qPCR, we found that the IDPN induced TD model had reduced striatal STX1A expression. In vitro, the DA content in the supernatant was significantly lower in the STX1A overexpressed group, and the intracellular DA content was significantly higher. Overexpression of STX1A in vivo partially counteracts the IDPN-induced TD-like behaviors, including bite time and head shaking time. Meanwhile, in-vivo knockdown of STX1A can aggravates TD-like behaviors. Further, DAT was overexpressed in vivo, and the TD-like behavior was alleviated. Interestingly, overexpression of DAT in the striatum resulted in increased levels of STX1A. In order to clarify the interaction between DAT and STX1A, the CO-IP analysis was conducted based on the protein of purified striatal dopaminergic neurons. Compared to the IgG control, the blots of DAT and STX1A showed significant binding of each other. Striatal STX1A expression is decreased in TD development, and STX1A plays an anti-TD role possibly through interaction with DAT, which maintains the DA reuptake. The exorbitant DA signal caused by STX1A inhibition drives the pathological stereotyped behavior.


2022 ◽  
Vol 15 (1) ◽  
pp. 76
Author(s):  
Yassamine Ouerdane ◽  
Mohamed Y. Hassaballah ◽  
Abdalrazeq Nagah ◽  
Tarek M. Ibrahim ◽  
Hosny A. H. Mohamed ◽  
...  

Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by bradykinesia, rigidity, and tremor. Considerable progress has been made to understand the exact mechanism leading to this disease. Most of what is known comes from the evidence of PD brains’ autopsies showing a deposition of Lewy bodies—containing a protein called α-synuclein (α-syn)—as the pathological determinant of PD. α-syn predisposes neurons to neurotoxicity and cell death, while the other associated mechanisms are mitochondrial dysfunction and oxidative stress, which are underlying precursors to the death of dopaminergic neurons at the substantia nigra pars compacta leading to disease progression. Several mechanisms have been proposed to unravel the pathological cascade of these diseases; most of them share a particular similarity: cell-to-cell communication through exosomes (EXOs). EXOs are intracellular membrane-based vesicles with diverse compositions involved in biological and pathological processes, which their secretion is driven by the NLR family pyrin domain-containing three proteins (NLRP3) inflammasome. Toxic biological fibrils are transferred to recipient cells, and the disposal of damaged organelles through generating mitochondrial-derived vesicles are suggested mechanisms for developing PD. EXOs carry various biomarkers; thus, they are promising to diagnose different neurological disorders, including neurodegenerative diseases (NDDs). As nanovesicles, the applications of EXOs are not only restricted as diagnostics but also expanded to treat NDDs as therapeutic carriers and nano-scavengers. Herein, the aim is to highlight the potential incrimination of EXOs in the pathological cascade and progression of PD and their role as biomarkers and therapeutic carriers for diagnosing and treating this neuro-debilitating disorder.


Cells ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 169
Author(s):  
Patrick D. Skelton ◽  
Valerie Tokars ◽  
Loukia Parisiadou

Mutations in leucine-rich repeat kinase 2 (LRRK2) cause Parkinson’s disease with a similar clinical presentation and progression to idiopathic Parkinson’s disease, and common variation is linked to disease risk. Recapitulation of the genotype in rodent models causes abnormal dopamine release and increases the susceptibility of dopaminergic neurons to insults, making LRRK2 a valuable model for understanding the pathobiology of Parkinson’s disease. It is also a promising druggable target with targeted therapies currently in development. LRRK2 mRNA and protein expression in the brain is highly variable across regions and cellular identities. A growing body of work has demonstrated that pathogenic LRRK2 mutations disrupt striatal synapses before the onset of overt neurodegeneration. Several substrates and interactors of LRRK2 have been identified to potentially mediate these pre-neurodegenerative changes in a cell-type-specific manner. This review discusses the effects of pathogenic LRRK2 mutations in striatal neurons, including cell-type-specific and pathway-specific alterations. It also highlights several LRRK2 effectors that could mediate the alterations to striatal function, including Rabs and protein kinase A. The lessons learned from improving our understanding of the pathogenic effects of LRRK2 mutations in striatal neurons will be applicable to both dissecting the cell-type specificity of LRRK2 function in the transcriptionally diverse subtypes of dopaminergic neurons and also increasing our understanding of basal ganglia development and biology. Finally, it will inform the development of therapeutics for Parkinson’s disease.


2022 ◽  
Vol 12 ◽  
Author(s):  
Yiwei Zeng ◽  
Yunhui Chen ◽  
Su Zhang ◽  
Huan Ren ◽  
Jialin Xia ◽  
...  

Methamphetamine (METH), an amphetamine-type psychostimulant, is highly abused worldwide. Chronic abuse of METH causes neurodegenerative changes in central dopaminergic neurons with numerous neuropsychiatric consequences. Neuronal apoptosis plays a critical role in METH-induced neurotoxicity and may provide promising pharmacological targets for preventing and treating METH addiction. In recent years, accumulating evidence has revealed that natural products may possess significant potentials to inhibit METH-evoked neuronal apoptosis. In this review, we summarized and analyzed the improvement effect of natural products on METH-induced neuronal apoptosis and their potential molecular mechanisms on modulating dopamine release, oxidative stress, mitochondrial-dependent apoptotic pathway, endoplasmic reticulum stress-mediated apoptotic pathway, and neuroinflammation. Hopefully, this review may highlight the potential value of natural products in modulating METH-caused neuronal apoptosis and provide useful information for future research and developments of novel and efficacious pharmacotherapies in this field.


2022 ◽  
Author(s):  
Al-Baraa Akram

Abstract Parkinson's disease is a heterogeneous, multifactorial and often complex disease characterized by motor impairment due to the presence of Lewy bodies and prominent degeneration of dopaminergic neurons in the substantia nigra. Although the specific pathogenesis involving PD remains under investigation, mitochondrial dysfunction has been widely accepted as one of the major pathogenic pathways underlying the development of PD. Based on the hypothesis that depiction of HtrA2 (serine protease gene, mitochondrial precursor) might contribute to an increase in mitochondrial stress and transcriptional upregulation of the nuclear stress-response CHOP gene. The present study aimed to analyze through laboratory-based research the role of HtrA2 and CHOP in the transmission of stress signaling and the consequent activation of mitochondrial quality control in Parkinson's disease using ATP and Bradford assays.


Sign in / Sign up

Export Citation Format

Share Document