scholarly journals One-dimensional hydrodynamic model of a tidal estuary for optimal control

1990 ◽  
Vol 14 (1) ◽  
pp. 36-45 ◽  
Author(s):  
H. Suckling ◽  
S.C. Ryrie
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Khalid Oufdil

Abstract In this paper, we study one-dimensional backward stochastic differential equations under logarithmic growth in the 𝑧-variable ( | z | ⁢ | ln ⁡ | z | | ) (\lvert z\rvert\sqrt{\lvert\ln\lvert z\rvert\rvert}) . We show the existence and the uniqueness of the solution when the noise is driven by a Brownian motion and an independent Poisson random measure. In addition, we highlight the connection of such BSDEs with stochastic optimal control problem, where we show the existence of an optimal strategy for the control problem.


2016 ◽  
Vol 48 (6) ◽  
pp. 1697-1709 ◽  
Author(s):  
Christina Papadaki ◽  
Vasilis Bellos ◽  
Lazaros Ntoanidis ◽  
Elias Dimitriou

Abstract Hydraulic-habitat models combine the dynamic behavior of river discharge with geomorphological and ecological responses. In this study, they are used for estimating environmental flow requirements. We applied a Pseudo-two-dimensional (2D) model based on the one-dimensional (1D) HEC-RAS model and an in-house 2D (FLOW-R2D) hydrodynamic model to a section of river for several flows in respect of summer conditions of the study reach, and compared the results derived from the models in terms of water depths and velocities as well as habitat predictions in terms of weighted usable area (WUA). In general, 2D models are more promising in habitat studies since they quantify spatial variations and combinations of flow patterns important to stream flora and fauna in a higher detail than the 1D models. Relationships between WUA and discharge for the two models were examined, to compare the similarity as well as the magnitude of predictions over the modelled discharge range. The models predicted differences in the location of maxima and changes in variation of velocity and water depth. Finally, differences in spatial distribution (in terms of suitability indices and WUA) between the Pseudo-2D and the fully 2D modelling results can be considerable on a cell-by-cell basis.


2020 ◽  
Vol 41 (12) ◽  
pp. 1421-1471
Author(s):  
Pierluigi Colli ◽  
M. Hassan Farshbaf-Shaker ◽  
Ken Shirakawa ◽  
Noriaki Yamazaki

1993 ◽  
Vol 03 (06) ◽  
pp. 759-788 ◽  
Author(s):  
F. JOCHMANN

The existence of a global weak solution of the one-dimensional hydrodynamic model for semiconductors is proved by the method of artificial viscosity and the theory of compensated compactness. The system is first regularized and global viscosity-solutions are constructed. Letting the viscosity-parameter tend to zero, we obtain a sequence of viscosity-solutions converging in L∞-weak* to a weak solution of the one-dimensional p-system from isoentropic gas dynamics with an electric field term and momentum relaxation. Since the equations are nonlinear and the convergence is only weak, the theory of Young-measures and compensated compactness is applied to obtain a weak solution of the limit problem.


Sign in / Sign up

Export Citation Format

Share Document