reaction path
Recently Published Documents


TOTAL DOCUMENTS

983
(FIVE YEARS 124)

H-INDEX

63
(FIVE YEARS 7)

2022 ◽  
Author(s):  
Junkui Wei ◽  
Run-jia Bao ◽  
Bo-wen Li

Abstract A detailed investigation of the reaction mechanism for UO2 reacting with F2 to form UF6 is performed by using density functional theory (DFT). We divide the whole reaction chain into four main steps, UO2+F2→UO2F2, UO2F2+F2→UO2F4, UO2F4→UF4+O2and UF4+F2→UF6. Contrary to what has been mostly expected that F2 molecule should directly replace two O atoms in UO2 molecule, two F2atoms actually combine with UO2 successively in the first two steps. The third step is relatively complex and one F atom in UO2F4 molecule plays a key role of carrying an O atomclose to the other O atom. In last step, F-F bond in F2 molecule fractures and two F atoms are bonding with U atom in UF4 molecule successively. Spin-flip appears in two elementary reactions owing to the existence of heavy atom U.


Author(s):  
Jie Cheng ◽  
Ruinian Xu ◽  
Ning Liu ◽  
Chengna Dai ◽  
Gangqiang Yu ◽  
...  

with coal gas can be a solution for NOx emission control in iron and steel industry, nevertheless the coal-gas- is not clearly understood and hard to study due to the...


Author(s):  
Lázaro A. M. Castanedo ◽  
Chérif F. Matta ◽  
Kai E. O. Ylijoki
Keyword(s):  

2021 ◽  
Author(s):  
Nivedita Acharjee ◽  
Haydar A Mohammad-Salim ◽  
Mrinmoy Chakraborty

Abstract The intramolecular [3+2] cycloaddition (32CA) reactions of azido alkynes leading to spirocyclic, tricyclic and bicyclic triazolooxazines has been studied within the molecular electron density theory (MEDT) at the MPWB1K/6-311G(d,p) level. The Electron localization function (ELF) characterizes the azido alkynes as zwitterionic species. Analysis of the Conceptual DFT indices allows classifying the azide moiety as the electrophilic counterpart and the alkyne as the nucleophilic one. These 32CA reactions are under kinetic control with the activation free energies of 23.4 - 26.7 kcal mol-1. Along the reaction path, the pseudoradical center is created initially at C4, consistent with the Parr function analysis, however the sequence of bond formation is controlled by the energetically feasible formation of the six membered oxazine ring. The intermolecular interactions at the TSs were characterized from the Quantum Theory of Atoms in Molecules (QTAIM) study and the Non covalent interaction (NCI) gradient isosurfaces.


2021 ◽  
Vol 18 (4) ◽  
pp. 1249
Author(s):  
Rehab M. Kubba ◽  
Mustafa mohammed Kadhim

In this work, the possibility to use new suggested carriers (D= Aspirin, Ibuprofen, Paracetamol, Tramal) is discussed for diclofenac drug (voltarine) by using quantum mechanics calculations. The calculation methods (PM3) and (DFT) have been used for determination the reaction path of (O-D) bond rupture energies. Different groups of drugs as a carrier for diclofenac prodrugs (in a vacuum) have been used; at their optimized geometries. The calculations included the geometrical structure and some of the physical properties, in addition to the toxicity, biological activity, and NLO properties of the prodrugs, investigated using HF method. The calculations were done by Gaussian 09 program. The comparison was made for total energies of reactants, activation energies, and transition states to final products. The suggested prodrugs aim to improve the diclofenac carrier's properties and obtain new alternatives for the approved carriers theoretically.


2021 ◽  
Author(s):  
◽  
Pauline Calloch

<p>This thesis demonstrates how selected ceramic additives, including titanium nitride (TiN), impact upon the “chemistry ↔ microstructure ↔ properties” relationship as it applies to composites in the generic Sialon-TiN composite field. Examination and optimisation of this feedback loop enables control of industrially important thermal, electrical and engineering properties of β-Sialon based ceramics.  The effects of a range of additives on the nitridation and sintering of β-Sialon composite bodies have been studied and the chemical and mechanical properties of the sintered bodies have been measured. The additives can be divided in three groups: nitridation additives which improve the yield and the rate of the reaction; sintering aids; and additives that improve resistance to thermal shock. A suite of additives consisting of a mixture of calcium aluminate cement, yttrium aluminium garnet and boron nitride was found to deliver an optimum set of mechanical properties with a fracture toughness achieved of over 4 MPa.m-1/2.  This thesis also reports a new reaction path for the formation of a β-Sialon/TiN composite by the reaction bonding of aluminium powder coated with nanosized titania. In this novel technique, the aluminium reacts under an inert atmosphere with titania to form alumina and a TixAly intermediate which is then nitrided to form aluminium nitride and titanium nitride. The addition of a suitable silicon phase enables the formation of a β-Sialon phase under nitrogen at high temperature. The TiN was added in the range 1 to 10 wt% (0.6 to 6 vol%).  The effects of milling time on the aluminium powder particle size distribution and reactivity have been studied, with a minimum of two days milling time required to modify the particle shape and reduce melting coagulation during firing. Firing parameters have been optimised, using XRD and MAS-NMR to monitor the samples’ composition and SEM to observe their microstructure. The reduction of titania by aluminium was completed at 900 ºC for 4 hours in an argon atmosphere and the nitridation of the titanium aluminide at 1400 ºC for 3 hours in a nitrogen flow. The nitridation and sintering of the β-Sialon/TiN composite were both performed in nitrogen at 1400 ºC and 1600 ºC, respectively. A low level of addition of TiN (1 wt%) has shifted the composition toward the AlN corner of the Sialon behaviour diagram, forming α-Sialon and AlN polytypes. Other levels of addition in the studied range formed a dense β-Sialon/TiN composite. The TiN inclusions are found at the grain boundaries but are of insufficient volume fraction to form a continuous network in the Sialon matrix.  Mechanical and electrical properties of the newly fabricated β-Sialon/TiN composites have been measured. These properties were generally improved by the highest levels of TiN addition: Young’s modulus (up to 210 GPa), hardness (up to 17.7 GPa), fracture toughness (up to 3.3 MPa.m-1/2) and compressive strength (up to 188 MPa). However the presence of TiN had no impact on the resistance to thermal shock and electrical conductivity of the β−Sialon.  Finally, the oxidation process for β-Sialon/TiN composites has been observed by a combination of XRD, SEM and Ion Beam Analysis techniques. The results show early enrichment of yttrium and titanium in the first 0.1 μm of the samples’ surface; replacement of nitrogen by oxygen to form crystalline phases on the surface and in the glassy phase up to 1.5 μm deep; and, major crystalline and chemical changes in an outer layer of about 100 μm thickness at 1200 ºC. The partial depletion of SiO species from the external sample surface during sintering firing leaves this surface zone more vulnerable to oxidation than the protected body of the ceramic. The oxidation of TiN forms a TiO₂ skin which acts as a protection from further oxidation.  The outcome of this research is a novel reaction path to fabricate new advanced Sialon composites and an improved understanding of the effect of a broad range of additives on the nitridation and sintering behaviour of β-Sialon and β-Sialon/TiN composites.</p>


2021 ◽  
Author(s):  
◽  
Pauline Calloch

<p>This thesis demonstrates how selected ceramic additives, including titanium nitride (TiN), impact upon the “chemistry ↔ microstructure ↔ properties” relationship as it applies to composites in the generic Sialon-TiN composite field. Examination and optimisation of this feedback loop enables control of industrially important thermal, electrical and engineering properties of β-Sialon based ceramics.  The effects of a range of additives on the nitridation and sintering of β-Sialon composite bodies have been studied and the chemical and mechanical properties of the sintered bodies have been measured. The additives can be divided in three groups: nitridation additives which improve the yield and the rate of the reaction; sintering aids; and additives that improve resistance to thermal shock. A suite of additives consisting of a mixture of calcium aluminate cement, yttrium aluminium garnet and boron nitride was found to deliver an optimum set of mechanical properties with a fracture toughness achieved of over 4 MPa.m-1/2.  This thesis also reports a new reaction path for the formation of a β-Sialon/TiN composite by the reaction bonding of aluminium powder coated with nanosized titania. In this novel technique, the aluminium reacts under an inert atmosphere with titania to form alumina and a TixAly intermediate which is then nitrided to form aluminium nitride and titanium nitride. The addition of a suitable silicon phase enables the formation of a β-Sialon phase under nitrogen at high temperature. The TiN was added in the range 1 to 10 wt% (0.6 to 6 vol%).  The effects of milling time on the aluminium powder particle size distribution and reactivity have been studied, with a minimum of two days milling time required to modify the particle shape and reduce melting coagulation during firing. Firing parameters have been optimised, using XRD and MAS-NMR to monitor the samples’ composition and SEM to observe their microstructure. The reduction of titania by aluminium was completed at 900 ºC for 4 hours in an argon atmosphere and the nitridation of the titanium aluminide at 1400 ºC for 3 hours in a nitrogen flow. The nitridation and sintering of the β-Sialon/TiN composite were both performed in nitrogen at 1400 ºC and 1600 ºC, respectively. A low level of addition of TiN (1 wt%) has shifted the composition toward the AlN corner of the Sialon behaviour diagram, forming α-Sialon and AlN polytypes. Other levels of addition in the studied range formed a dense β-Sialon/TiN composite. The TiN inclusions are found at the grain boundaries but are of insufficient volume fraction to form a continuous network in the Sialon matrix.  Mechanical and electrical properties of the newly fabricated β-Sialon/TiN composites have been measured. These properties were generally improved by the highest levels of TiN addition: Young’s modulus (up to 210 GPa), hardness (up to 17.7 GPa), fracture toughness (up to 3.3 MPa.m-1/2) and compressive strength (up to 188 MPa). However the presence of TiN had no impact on the resistance to thermal shock and electrical conductivity of the β−Sialon.  Finally, the oxidation process for β-Sialon/TiN composites has been observed by a combination of XRD, SEM and Ion Beam Analysis techniques. The results show early enrichment of yttrium and titanium in the first 0.1 μm of the samples’ surface; replacement of nitrogen by oxygen to form crystalline phases on the surface and in the glassy phase up to 1.5 μm deep; and, major crystalline and chemical changes in an outer layer of about 100 μm thickness at 1200 ºC. The partial depletion of SiO species from the external sample surface during sintering firing leaves this surface zone more vulnerable to oxidation than the protected body of the ceramic. The oxidation of TiN forms a TiO₂ skin which acts as a protection from further oxidation.  The outcome of this research is a novel reaction path to fabricate new advanced Sialon composites and an improved understanding of the effect of a broad range of additives on the nitridation and sintering behaviour of β-Sialon and β-Sialon/TiN composites.</p>


Sign in / Sign up

Export Citation Format

Share Document