Relativistic corrections to the gravitational radiation of a binary system and the fine structure of the spectrum

1980 ◽  
Vol 77 (5) ◽  
pp. 387-390 ◽  
Author(s):  
D.V. Galtsov ◽  
A.A. Matiukhin ◽  
V.I. Petukhov
2021 ◽  
Vol 2081 (1) ◽  
pp. 012008
Author(s):  
Innocenzo M Pinto

Abstract Using the simplest yet meaningful Peters-Mathews model describing the orbital damping of a compact binary system under the emission of gravitatonal radiation, we show that the chirp-mass of an eccentric inspiraling binary, and its (Keplerian) orbital eccentricity at some reference time, can be estimated from the time-frequency skeleton of its gravitational wave signal. The estimation algorithm is nicely simple, and is robust against the non-ideal (non Gaussian, non stationary) features of detector noise.


Author(s):  
Kenneth G. Dyall ◽  
Knut Faegri

Perturbation theory has been one of the most frequently used and most powerful tools of quantum mechanics. The very foundations of relativistic quantum theory—quantum electrodynamics—are perturbative in nature. Many-body perturbation theory has been used for electron correlation treatments since the early days of quantum chemistry, and in more recent times multireference perturbation theories have been developed to provide quantitative or semiquantitative information in very complex systems. In the beginnings of relativistic quantum mechanics, perturbation methods based on an expansion in powers of the fine structure constant, α = 1/c, were used extensively to obtain operators that would provide a connection with nonrelativistic quantum mechanics and permit some evaluation of relativistic corrections, in days well before the advent of the computer. This seems a reasonable approach, considering the small size of the fine structure constant—and for light elements it has been found to work remarkably well. Relativity is a small perturbation for a good portion of the periodic table. Perturbation expansions have their limitations, however, and as well as successes, there have been failures due to the highly singular or unbounded nature of the operators in the perturbation expansions. Therefore, in recent times other perturbation approaches have been developed to provide alternatives to the standard Breit–Pauli approach. This chapter is devoted to the development of perturbation expansions in powers of 1/c from the Dirac equation. In the previous chapter, the Pauli Hamiltonian was developed using the Foldy–Wouthuysen transformation. While this is an elegant method, it is probably simpler to make the derivation from the elimination of the small component with expansion of the denominator, and it is this approach that we use here. Another convenient approach is to make use of the modified Dirac equation in the limit of equality of the large and pseudo-large components. This approach enables us to draw on results from the modified Dirac approach in developing the two-electron terms of the Breit–Pauli Hamiltonian. We then demonstrate how the use of perturbation theory for relativistic corrections requires that multiple perturbation theory be employed for correlation effects and for properties.


2007 ◽  
Vol 22 (13) ◽  
pp. 2405-2414 ◽  
Author(s):  
MÁTYÁS VASÚTH ◽  
JÁNOS MAJÁR

One of the promising sources of gravitational radiation is a binary system composed of compact stars. It is an important question of how the rotation of the bodies and the eccentricity of the orbit affect the detectable signal. Here we present a method to evaluate the gravitational wave polarization states for inspiralling compact binaries with comparable mass. We consider eccentric orbits and the spin-orbit contribution in the case of one spinning object up to 1.5 post-Newtonian order. For circular orbits our results are in agreement with existing calculations.


Sign in / Sign up

Export Citation Format

Share Document