orbital eccentricity
Recently Published Documents


TOTAL DOCUMENTS

218
(FIVE YEARS 67)

H-INDEX

28
(FIVE YEARS 6)

2022 ◽  
Vol 163 (2) ◽  
pp. 61
Author(s):  
Paul A. Dalba ◽  
Stephen R. Kane ◽  
Diana Dragomir ◽  
Steven Villanueva ◽  
Karen A. Collins ◽  
...  

Abstract We report the discovery of TOI-2180 b, a 2.8 M J giant planet orbiting a slightly evolved G5 host star. This planet transited only once in Cycle 2 of the primary Transiting Exoplanet Survey Satellite (TESS) mission. Citizen scientists identified the 24 hr single-transit event shortly after the data were released, allowing a Doppler monitoring campaign with the Automated Planet Finder telescope at Lick Observatory to begin promptly. The radial velocity observations refined the orbital period of TOI-2180 b to be 260.8 ± 0.6 days, revealed an orbital eccentricity of 0.368 ± 0.007, and discovered long-term acceleration from a more distant massive companion. We conducted ground-based photometry from 14 sites spread around the globe in an attempt to detect another transit. Although we did not make a clear transit detection, the nondetections improved the precision of the orbital period. We predict that TESS will likely detect another transit of TOI-2180 b in Sector 48 of its extended mission. We use giant planet structure models to retrieve the bulk heavy-element content of TOI-2180 b. When considered alongside other giant planets with orbital periods over 100 days, we find tentative evidence that the correlation between planet mass and metal enrichment relative to stellar is dependent on orbital properties. Single-transit discoveries like TOI-2180 b highlight the exciting potential of the TESS mission to find planets with long orbital periods and low irradiation fluxes despite the selection biases associated with the transit method.


2022 ◽  
Vol 105 (2) ◽  
Author(s):  
Marc Favata ◽  
Chunglee Kim ◽  
K. G. Arun ◽  
JeongCho Kim ◽  
Hyung Won Lee

2021 ◽  
Vol 9 ◽  
Author(s):  
Gianluca Sottili ◽  
Sebastien Lambert ◽  
Danilo Mauro Palladino

In this paper, we examine the origins and the history of the hypothesis for an influence of tidal forces on volcanic activity. We believe that exploring this subject through a historical perspective may help geoscientists gain new insights in a field of research so closely connected with the contemporary scientific debate and often erroneously considered as a totally separated niche topic. The idea of an influence of the Moon and Sun on magmatic processes dates back to the Hellenistic world. However, it was only since the late 19th century, with the establishment of volcano observatories at Mt. Etna and Vesuvius allowing a systematic collection of observations with modern methods, that the “tidal controversy” opened one of the longest and most important debates in Earth Science. At the beginning of the 20th century, the controversy assumed a much more general significance, as the debate around the tidal influence on volcanism developed around the formulation of the first modern theories on the origins of volcanism, the structure of the Earth’s interior and the mechanisms for continental drift. During the same period, the first experimental evidence for the existence of the Earth tides by Hecker (Beobachtungen an Horizontalpendeln über die Deformation des Erdkörpers unter dem Einfluss von Sonne und MondVeröffentlichung des Königl, 1907, 32), and the Chamberlin–Moulton planetesimal hypothesis (proposed in 1905 by geologist Thomas Chrowder Chamberlin and astronomer Forest Ray Moulton) about the “tidal” origin of the Solar System, influenced and stimulated new researches on volcano-tides interactions, such as the first description of the “lava tide” at the Kilauea volcano by Thomas Augustus Jaggar in 1924. Surprisingly, this phase of gradual acceptance of the tidal hypothesis was followed by a period of lapse between 1930 to late 1960. A new era of stimulating and interesting speculations opened at the beginning of the seventies of the 20th century thanks to the discovery of the moonquakes revealed by the Apollo Lunar Surface Experiment Package. A few years later, in 1979, the intense volcanism on the Jupiter’s moon Io, discovered by the Voyager 1 mission, was explained by the tidal heating produced by the Io’s orbital eccentricity. In the last part of the paper, we discuss the major advances over the last decades and the new frontiers of this research topic, which traditionally bears on interdisciplinary contributions (e.g., from geosciences, physics, astronomy). We conclude that the present-day debate around the environmental crisis, characterized by a large collection of interconnected variables, stimulated a new field of research around the complex mechanisms of mutual interactions among orbital factors, Milankovitch Cycles, climate changes and volcanism.


2021 ◽  
Vol 163 (1) ◽  
pp. 9
Author(s):  
Mma Ikwut-Ukwa ◽  
Joseph E. Rodriguez ◽  
Samuel N. Quinn ◽  
George Zhou ◽  
Andrew Vanderburg ◽  
...  

Abstract We report the discovery of two short-period massive giant planets from NASA’s Transiting Exoplanet Survey Satellite (TESS). Both systems, TOI-558 (TIC 207110080) and TOI-559 (TIC 209459275), were identified from the 30 minute cadence full-frame images and confirmed using ground-based photometric and spectroscopic follow-up observations from TESS’s follow-up observing program working group. We find that TOI-558 b, which transits an F-dwarf (M * = 1.349 − 0.065 + 0.064 M ⊙, R * = 1.496 − 0.040 + 0.042 R ⊙, T eff = 6466 − 93 + 95 K, age 1.79 − 0.73 + 0.91 Gyr) with an orbital period of 14.574 days, has a mass of 3.61 ± 0.15 M J, a radius of 1.086 − 0.038 + 0.041 R J, and an eccentric (e = 0.300 − 0.020 + 0.022 ) orbit. TOI-559 b transits a G dwarf (M * = 1.026 ± 0.057 M ⊙, R * = 1.233 − 0.026 + 0.028 R ⊙, T eff = 5925 − 76 + 85 K, age 6.8 − 2.0 + 2.5 Gyr) in an eccentric (e = 0.151 ± 0.011) 6.984 days orbit with a mass of 6.01 − 0.23 + 0.24 M J and a radius of 1.091 − 0.025 + 0.028 R J. Our spectroscopic follow up also reveals a long-term radial velocity trend for TOI-559, indicating a long-period companion. The statistically significant orbital eccentricity measured for each system suggests that these planets migrated to their current location through dynamical interactions. Interestingly, both planets are also massive (>3 M J), adding to the population of massive giant planets identified by TESS. Prompted by these new detections of high-mass planets, we analyzed the known mass distribution of hot and warm Jupiters but find no significant evidence for multiple populations. TESS should provide a near magnitude-limited sample of transiting hot Jupiters, allowing for future detailed population studies.


Universe ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 482
Author(s):  
Tiziana Talu ◽  
Elisa Maria Alessi ◽  
Giacomo Tommei

The aim of this work is to investigate the main dominant terms of lunisolar perturbations that affect the orbital eccentricity of a Molniya satellite in the long term. From a practical point of view, these variations are important in the context of space situational awareness—for instance, to model the long-term evolution of artificial debris in a highly elliptical orbit or to design a reentry end-of-life strategy for a satellite in a highly elliptical orbit. The study assumes a doubly averaged model including the Earth’s oblateness effect and the lunisolar perturbations up to the third-order expansion. The work presents three important novelties with respect to the literature. First, the perturbing terms are ranked according to their amplitudes and periods. Second, the perturbing bodies are not assumed to move on circular orbits. Third, the lunisolar effect on the precession of the argument of pericenter is analyzed and discussed. As an example of theoretical a application, we depict the phase space description associated with each dominant term, taken as isolated, and we show which terms can apply to the relevant dynamics in the same region.


2021 ◽  
Vol 2145 (1) ◽  
pp. 012014
Author(s):  
N Nantanoi ◽  
N Nantanoi ◽  
S Awiphan ◽  
S Komonjinda ◽  
T Bunfong

Abstract Nowadays, more than 4,000 exoplanets have been discovered, including a hundred of circumbinary planets. In the following work, the orbital variations of 67 S-type circumbinary planets have been studied. Their orbital evolutions for a thousand years are simulated using the REBOUND package. The published physical and orbital parameters of the systems are used to computed the systems’ orbital instability limits: Roche limit and Hill’s sphere. From 67 systems, there are two unstable circumbinary systems: Kepler-420 and GJ 86. Kepler-420 Ab orbit passes into the system’s Roche limit due to its high orbital eccentricity. For GJ 86 Ab, the planet orbits outside its Hill’s sphere. The instability of GJ 86 Ab might be caused by an inaccurate measurement of GJ 86 A physical parameters. Using the GJ 86 A mass obtained from Farihi et al., the planet orbits in the stable orbit zone.


2021 ◽  
Vol 162 (6) ◽  
pp. 285
Author(s):  
Isabel Lipartito ◽  
John I. Bailey III ◽  
Timothy D. Brandt ◽  
Benjamin A. Mazin ◽  
Mario Mateo ◽  
...  

Abstract We present orbits for 24 binaries in the field of open cluster NGC 2516 (∼150 Myr) and 13 binaries in the field of open cluster NGC 2422 (∼130 Myr) using results from a multiyear radial-velocity (RV) survey of the cluster cores. Six of these systems are double-lined spectroscopic binaries. We fit these RV variable systems with orvara, a MCMC-based fitting program that models Keplerian orbits. We use precise stellar parallaxes and proper motions from Gaia EDR3 to determine cluster membership. We impose a barycentric RV prior on all cluster members; this significantly improves our orbital constraints. Two of our systems have periods between five and 15 days, the critical window in which tides efficiently damp orbital eccentricity. These binaries should be included in future analyses of circularization across similarly-aged clusters. We also find a relatively flat distribution of binary mass ratios, consistent with previous work. With the inclusion of TESS light curves for all available targets, we identity target 378–036252 as a new eclipsing binary. We also identify a field star whose secondary has a mass in the brown dwarf range, as well as two cluster members whose RVs suggest the presence of an additional companion. Our orbital fits will help constrain the binary fraction and binary properties across stellar age and across stellar environment.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Teuntje P. Hollaar ◽  
Sarah J. Baker ◽  
Stephen P. Hesselbo ◽  
Jean-François Deconinck ◽  
Luke Mander ◽  
...  

AbstractFire regimes are changing due to both anthropogenic climatic drivers and vegetation management challenges, making it difficult to determine how climate alone might influence wildfire activity. Earth has been subject to natural-background climate variability throughout its past due to variations in Earth’s orbital parameters (Milkankovitch cycles), which provides an opportunity to assess climate-only driven variations in wildfire. Here we present a 350,000 yr long record of fossil charcoal from mid-latitude (~35°N) Jurassic sedimentary rocks. These results are coupled to estimates of variations in the hydrological cycle using clay mineral, palynofacies and elemental analyses, and lithological and biogeochemical signatures. We show that fire activity strongly increased during extreme seasonal contrast (monsoonal climate), which has been linked to maximal precessional forcing (boreal summer in perihelion) (21,000 yr cycles), and we hypothesize that long eccentricity modulation further enhances precession-forced fire activity.


2021 ◽  
Vol 17 (6) ◽  
pp. 2343-2360
Author(s):  
Slah Boulila ◽  
Guillaume Dupont-Nivet ◽  
Bruno Galbrun ◽  
Hugues Bauer ◽  
Jean-Jacques Châteauneuf

Abstract. The Eocene–Oligocene Transition (EOT) marks the onset of the Antarctic glaciation and the switch from greenhouse to icehouse climates. However, the driving mechanisms and the precise timing of the EOT remain controversial mostly due to the lack of well-dated stratigraphic records, especially in continental environments. Here we present a cyclo-magnetostratigraphic and sedimentological study of a ∼ 7.6 Myr long lacustrine record spanning the late Eocene to the earliest Oligocene, from a drill core in the Rennes Basin (France). Cyclostratigraphic analysis of natural gamma radiation (NGR) log data yields duration estimates of Chrons C12r through C16n.1n, providing additional constraints on the Eocene timescale. Correlations between the orbital eccentricity curve and the 405 kyr tuned NGR time series indicate that 33.71 and 34.10 Ma are the most likely proposed ages of the EO boundary. Additionally, the 405 kyr tuning calibrates the most pronounced NGR cyclicity to a period of ∼1 Myr, matching the g1–g5 eccentricity term, supporting its significant expression in continental depositional environments, and hypothesizing that the paleolake level may have behaved as a low-pass filter for orbital forcing. Two prominent changes in the sedimentary facies were detected across the EOT, which are temporally equivalent to the two main climatic steps, EOT-1 and Oi-1. We suggest that these two facies changes reflect the two major Antarctic cooling/glacial phases via the hydrological cycle, as significant shifts to drier and cooler climate conditions. Finally, the interval spanning the EOT precursor glacial event through EOT-1 is remarkably dominated by obliquity. This suggests preconditioning of the major Antarctic glaciation, either from obliquity directly affecting the formation/(in)stability of the incipient Antarctic Ice Sheet (AIS), or through obliquity modulation of the North Atlantic Deep Water production.


2021 ◽  
Vol 2081 (1) ◽  
pp. 012008
Author(s):  
Innocenzo M Pinto

Abstract Using the simplest yet meaningful Peters-Mathews model describing the orbital damping of a compact binary system under the emission of gravitatonal radiation, we show that the chirp-mass of an eccentric inspiraling binary, and its (Keplerian) orbital eccentricity at some reference time, can be estimated from the time-frequency skeleton of its gravitational wave signal. The estimation algorithm is nicely simple, and is robust against the non-ideal (non Gaussian, non stationary) features of detector noise.


Sign in / Sign up

Export Citation Format

Share Document