Shallow water waves: Conservation laws and symplectic geometry

1983 ◽  
Vol 95 (1) ◽  
pp. 27-28 ◽  
Author(s):  
Yilmaz Akyildiz
1987 ◽  
Vol 10 (3) ◽  
pp. 557-562 ◽  
Author(s):  
Yilmaz Akyildiz

We consider the system of nonlinear differential equations governing shallow water waves over a uniform or sloping bottom. By using the hodograph method we construct solutions, conservation laws, and Böcklund transformations for these equations. We show that these constructions are canonical relative to a symplectic form introduced by Manin.


Open Physics ◽  
2016 ◽  
Vol 14 (1) ◽  
pp. 37-43 ◽  
Author(s):  
Emrullah Yaşar ◽  
Sait San ◽  
Yeşim Sağlam Özkan

AbstractIn this work, we consider the ill-posed Boussinesq equation which arises in shallow water waves and non-linear lattices. We prove that the ill-posed Boussinesq equation is nonlinearly self-adjoint. Using this property and Lie point symmetries, we construct conservation laws for the underlying equation. In addition, the generalized solitonary, periodic and compact-like solutions are constructed by the exp-function method.


1986 ◽  
Vol 9 (2) ◽  
pp. 387-396
Author(s):  
Yilmaz Akyildiz

Shallow water waves are governed by a pair of non-linear partial differential equations. We transfer the associated homogeneous and non-homogeneous systems, (corresponding to constant and sloping depth, respectively), to the hodograph plane where we find all the non-simple wave solutions and construct infinitely many polynomial conservation laws. We also establish correspondence between conservation laws and hodograph solutions as well as Bäcklund transformations by using the linear nature of the problems on the hodogrpah plane.


Symmetry ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 434 ◽  
Author(s):  
Jean-Guy Caputo ◽  
Denys Dutykh ◽  
Bernard Gleyse

We considered the propagation of nonlinear shallow water waves in a narrow channel presenting a fork. We aimed at computing the coupling conditions for a 1D effective model, using 2D simulations and an analysis based on the conservation laws. For small amplitudes, this analysis justifies the well-known Stoker interface conditions, so that the coupling does not depend on the angle of the fork. We also find this in the numerical solution. Large amplitude solutions in a symmetric fork also tend to follow Stoker’s relations, due to the symmetry constraint. For non symmetric forks, 2D effects dominate so that it is necessary to understand the flow inside the fork. However, even then, conservation laws give some insight in the dynamics.


Author(s):  
Shin-ichi AOKI ◽  
Tomoki HAMANO ◽  
Taishi NAKAYAMA ◽  
Eiichi OKETANI ◽  
Takahiro HIRAMATSU ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document