Effects of diesel fuel composition on exhaust emissions from DI diesel engine — study of the use of light cycle oil as A component of diesel fuel

JSAE Review ◽  
1995 ◽  
Vol 16 (3) ◽  
pp. 319 ◽  
Author(s):  
M Morinaga
2017 ◽  
Vol 68 (1) ◽  
pp. 35-39
Author(s):  
Raluca Elena Dragomir ◽  
Paul Rosca ◽  
Traian Juganaru

This paper presents options for increasing production of diesel fuel in a refinery by FCC light cycle oil (LCO) hydrotreating together with the straight run gas oil (SRGO). The experiments consist of hydrotreating mixtures of 10, 20% LCO and 90% and respectively 80% SRGO at 360, 380�C, two liquid hourly space velocity 0.9 h-1, 1.2 h-1, pressure 50 bar in the presence of two industrial catalyst type Co/Mo and NiMo. The research has focused on the influence of LCO/SRGO ratio, type of catalyst and hydrotreating conditions on diesel fuel quality compared with characteristics required by standard EN 590.


2017 ◽  
Vol 140 (1) ◽  
Author(s):  
Zhengxi Guo ◽  
Hejun Guo ◽  
Qingping Zeng

Utilization of oxygenated fuels has proven to be able to significantly control diesel engine exhaust emissions. Presented in this paper is a new oxygenated fuel di-(2-methoxypropyl) carbonate (DMPC), which was produced through transesterification reaction using dimethyl carbonate (DMC) and propylene glycol monomethyl ether (PGMME) as reactants as well as potassium hydroxide (KOH) as catalyst. Its structure characterization was completed through analyses with Fourier transform infrared (FT-IR), 1H nuclear magnetic resonance (NMR), and GC-MS analytical techniques. Further study was made about the effect of the oxygenate addition to diesel fuel on chemicophysical properties, combustion performances, and exhaust emissions characteristics. Experimental results displayed that the oxygenated fuel is mutually soluble with diesel fuel in any proportion at ambient temperature around 25 °C. With DMPC introduced to diesel fuel, kinematic viscosity decreases linearly, smoke point increases linearly, and flash point declines remarkably even under low content 5 vol %. Results of combustion test carried out on a single cylinder, DI diesel engine running at 1600 rpm and 2000 rpm showed that CO can be reduced by up to 60.0%, smoke can be lessened by up to 90.2%, while NOx increases by 4.4–14.0% as 15 vol % and 25 vol % of the oxygenate was added to a diesel fuel. Engine in-cylinder peak pressure increases somewhat and ignition delay duration becomes a little shorter. Both engine in-cylinder pressure rising rate and heat release rate increase noticeably during the premixed combustion.


2008 ◽  
Vol 49 (11) ◽  
pp. 3155-3162 ◽  
Author(s):  
D.C. Rakopoulos ◽  
C.D. Rakopoulos ◽  
E.C. Kakaras ◽  
E.G. Giakoumis

Fuel ◽  
2021 ◽  
Vol 292 ◽  
pp. 120364
Author(s):  
Peipei Miao ◽  
Xiaolin Zhu ◽  
Yangling Guo ◽  
Jie Miao ◽  
Mengyun Yu ◽  
...  

Author(s):  
Wanpeng Hu ◽  
Haiping Zhang ◽  
Min Wang ◽  
Jianglong Pu ◽  
Kyle Rogers ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document