9538852 Evaluation of nonlinearity in vibration analysis for thin walled structures with curvature (1st report) Takao Yamaguchi, Shuji Matumura (Subaru Research Center Co. Ltd.), Ken-ichi Nagai (Gumma University)

JSAE Review ◽  
1996 ◽  
Vol 17 (1) ◽  
pp. 84
2019 ◽  
Vol 26 (4) ◽  
pp. 39-46
Author(s):  
Do Van Doan ◽  
Adam Szeleziński ◽  
Lech Murawski ◽  
Adam Muc

AbstractThin-walled structures are very popular in industries, especially in the field of shipbuilding. There are many types of equipment and structures of ships, which are made up of thin-walled structures such as hull, deck and superstructure. Therefore, the analysis and understanding of the static and dynamic characteristics of a thin-walled structure are very important. In this article, we focus on vibration analysis of a typical thin-walled structure-rectangular plate, a basic structure of the hull. Vibration analysis of a rectangular thin plate is conducted by two methods: numerical modelling method of the finite element on Patran-Nastran software platform and experimental method implemented in the laboratory of Gdynia Maritime University. Thin rectangular plate is fixed one end by four clamping plates and is modelled with finite elements and different meshing densities. The numerical model of thin rectangular plate is divided into four cases. Case 1, thin rectangular plate, and clamping plates are modelled with two-dimensional elements. Case 2, the rectangular thin plate is modelled with two-dimensional elements; the clamping plates are modelled with three-dimensional elements. Case 3, both the rectangular thin plate and clamping plates are modelled with three-dimensional elements. Case 4, the rectangular thin plate, and clamping plates are modelled with three-dimensional elements with larger mesh density to increase the accuracy of the calculation results. After that, the results of vibration analysis according to the numerical modelling method on Patran-Nastran software platform for these cases were compared with the measurement results. From there, assess the accuracy of analysis results of selected numerical model methods and the ability to widely apply this numerical model method to other marine structures.


2018 ◽  
Vol 762 (8) ◽  
pp. 36-39 ◽  
Author(s):  
B.G. BULATOV ◽  
◽  
R.I. SHIGAPOV ◽  
M.A. IVLEV ◽  
I.V. NEDOSEKO ◽  
...  

Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 592
Author(s):  
Feng Yue ◽  
Ziyan Wu

The fracture mechanical behaviour of thin-walled structures with cracks is highly significant for structural strength design, safety and reliability analysis, and defect evaluation. In this study, the effects of various factors on the fracture parameters, crack initiation angles and plastic zones of thin-walled cylindrical shells with cracks are investigated. First, based on the J-integral and displacement extrapolation methods, the stress intensity factors of thin-walled cylindrical shells with circumferential cracks and compound cracks are studied using linear elastic fracture mechanics, respectively. Second, based on the theory of maximum circumferential tensile stress of compound cracks, the number of singular elements at a crack tip is varied to determine the node of the element corresponding to the maximum circumferential tensile stress, and the initiation angle for a compound crack is predicted. Third, based on the J-integral theory, the size of the plastic zone and J-integral of a thin-walled cylindrical shell with a circumferential crack are analysed, using elastic-plastic fracture mechanics. The results show that the stress in front of a crack tip does not increase after reaching the yield strength and enters the stage of plastic development, and the predicted initiation angle of an oblique crack mainly depends on its original inclination angle. The conclusions have theoretical and engineering significance for the selection of the fracture criteria and determination of the failure modes of thin-walled structures with cracks.


Sign in / Sign up

Export Citation Format

Share Document