The Selberg zeta function and a new Kähler metric on the moduli space of punctured Riemann surfaces

1988 ◽  
Vol 5 (4) ◽  
pp. 551-570 ◽  
Author(s):  
L.A. Takhtajan ◽  
P.G. Zograf
2019 ◽  
Vol 30 (14) ◽  
pp. 1950071
Author(s):  
Anilatmaja Aryasomayajula ◽  
Indranil Biswas

Let [Formula: see text] be a compact hyperbolic Riemann surface equipped with the Poincaré metric. For any integer [Formula: see text], we investigate the Bergman kernel associated to the holomorphic Hermitian line bundle [Formula: see text], where [Formula: see text] is the holomorphic cotangent bundle of [Formula: see text]. Our first main result estimates the corresponding Bergman metric on [Formula: see text] in terms of the Poincaré metric. We then consider a certain natural embedding of the symmetric product of [Formula: see text] into a Grassmannian parametrizing subspaces of fixed dimension of the space of all global holomorphic sections of [Formula: see text]. The Fubini–Study metric on the Grassmannian restricts to a Kähler metric on the symmetric product of [Formula: see text]. The volume form for this restricted metric on the symmetric product is estimated in terms of the Bergman kernel of [Formula: see text] and the volume form for the orbifold Kähler form on the symmetric product given by the Poincaré metric on [Formula: see text].


We present a quantitative analysis of Selberg’s trace formula viewed as an exact version of Gutzwiller’s semiclassical periodic-orbit theory for the quantization of classically chaotic systems. Two main applications of the trace formula are discussed in detail, (i) The periodic-orbit sum rules giving a smoothing of the quantal energy-level density. (ii) The Selberg zeta function as a prototype of a dynamical zeta function defined as an Euler product over the classical periodic orbits and its analytic continuation across the entropy barrier by means of a Dirichlet series. It is shown how the long periodic orbits can be effectively taken into account by a universal remainder term which is explicitly given as an integral over an ‘orbit-selection function’. Numerical results are presented for the free motion of a point particle on compact Riemann surfaces (Hadamard-Gutzwiller model), which is the primary testing ground for our ideas relating quantum mechanics and classical mechanics in the case of strong chaos. Our results demonstrate clearly the crucial role played by the long periodic orbits. An exact rule for quantizing chaos is derived for such systems where the Dirichlet series representing the Selberg zeta function converges on the critical line. Explicit formulae are given for the computation of the abscissae of absolute and conditional convergence, respectively, of these dynamical Dirichlet series. For the two Riemann surfaces considered, it turns out that one can cross the entropy barrier, but that the critical line cannot be reached by a convergent Dirichlet series. It would seem that this is the main reason why the Riemann-Siegel lookalike formula, recently conjectured by M. V. Berry and J. P. Keating, fails in generating the lower-lying quantal energies for these strongly chaotic systems.


2016 ◽  
Vol 228 ◽  
pp. 21-71 ◽  
Author(s):  
JAY JORGENSON ◽  
LEJLA SMAJLOVIĆ

We study the distribution of zeros of the derivative of the Selberg zeta function associated to a noncompact, finite volume hyperbolic Riemann surface $M$. Actually, we study the zeros of $(Z_{M}H_{M})^{\prime }$, where $Z_{M}$ is the Selberg zeta function and $H_{M}$ is the Dirichlet series component of the scattering matrix, both associated to an arbitrary finite volume hyperbolic Riemann surface $M$. Our main results address finiteness of number of zeros of $(Z_{M}H_{M})^{\prime }$ in the half-plane $\operatorname{Re}(s)<1/2$, an asymptotic count for the vertical distribution of zeros, and an asymptotic count for the horizontal distance of zeros. One realization of the spectral analysis of the Laplacian is the location of the zeros of $Z_{M}$, or, equivalently, the zeros of $Z_{M}H_{M}$. Our analysis yields an invariant $A_{M}$ which appears in the vertical and weighted vertical distribution of zeros of $(Z_{M}H_{M})^{\prime }$, and we show that $A_{M}$ has different values for surfaces associated to two topologically equivalent yet different arithmetically defined Fuchsian groups. We view this aspect of our main theorem as indicating the existence of further spectral phenomena which provides an additional refinement within the set of arithmetically defined Fuchsian groups.


Author(s):  
Benson Farb ◽  
Dan Margalit

The study of the mapping class group Mod(S) is a classical topic that is experiencing a renaissance. It lies at the juncture of geometry, topology, and group theory. This book explains as many important theorems, examples, and techniques as possible, quickly and directly, while at the same time giving full details and keeping the text nearly self-contained. The book is suitable for graduate students. It begins by explaining the main group-theoretical properties of Mod(S), from finite generation by Dehn twists and low-dimensional homology to the Dehn–Nielsen–Baer–theorem. Along the way, central objects and tools are introduced, such as the Birman exact sequence, the complex of curves, the braid group, the symplectic representation, and the Torelli group. The book then introduces Teichmüller space and its geometry, and uses the action of Mod(S) on it to prove the Nielsen-Thurston classification of surface homeomorphisms. Topics include the topology of the moduli space of Riemann surfaces, the connection with surface bundles, pseudo-Anosov theory, and Thurston's approach to the classification.


Sign in / Sign up

Export Citation Format

Share Document