Use of equal-time commutators involving the symmetric energy-momentum tensor for the derivation of sum rules

1971 ◽  
Vol 34 (2) ◽  
pp. 429-444 ◽  
Author(s):  
H. Genz ◽  
J. Katz
2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
S. Rodini ◽  
A. Metz ◽  
B. Pasquini

Abstract Different decompositions of the nucleon mass, in terms of the masses and energies of the underlying constituents, have been proposed in the literature. We explore the corresponding sum rules in quantum electrodynamics for an electron at one-loop order in perturbation theory. To this aim we compute the form factors of the energy-momentum tensor, by paying particular attention to the renormalization of ultraviolet divergences, operator mixing and scheme dependence. We clarify the expressions of all the proposed sum rules in the electron rest frame in terms of renormalized operators. Furthermore, we consider the same sum rules in a moving frame, where they become energy decompositions. Finally, we discuss some implications of our study on the mass sum rules for the nucleon.


1969 ◽  
Vol 13 (2) ◽  
pp. 401-414 ◽  
Author(s):  
H. Genz ◽  
J. Katz

2011 ◽  
Vol 20 (02) ◽  
pp. 161-168 ◽  
Author(s):  
MOHAMMAD R. SETARE ◽  
M. DEHGHANI

We investigate the energy–momentum tensor for a massless conformally coupled scalar field in the region between two curved surfaces in k = -1 static Robertson–Walker space–time. We assume that the scalar field satisfies the Robin boundary condition on the surfaces. Robertson–Walker space–time space is conformally related to Rindler space; as a result we can obtain vacuum expectation values of the energy–momentum tensor for a conformally invariant field in Robertson–Walker space–time space from the corresponding Rindler counterpart by the conformal transformation.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Yi Li ◽  
Yang Zhou

Abstract In this article we probe the proposed holographic duality between $$ T\overline{T} $$ T T ¯ deformed two dimensional conformal field theory and the gravity theory of AdS3 with a Dirichlet cutoff by computing correlators of energy-momentum tensor. We focus on the large central charge sector of the $$ T\overline{T} $$ T T ¯ CFT in a Euclidean plane and a sphere, and compute the correlators of energy-momentum tensor using an operator identity promoted from the classical trace relation. The result agrees with a computation of classical pure gravity in Euclidean AdS3 with the corresponding cutoff surface, given a holographic dictionary which identifies gravity parameters with $$ T\overline{T} $$ T T ¯ CFT parameters.


Sign in / Sign up

Export Citation Format

Share Document