Classical and quantum mechanics of non-abelian gauge fields

1984 ◽  
Vol 246 (2) ◽  
pp. 302-334 ◽  
Author(s):  
G.K. Savvidy
2001 ◽  
Vol 16 (29) ◽  
pp. 1919-1932
Author(s):  
P. C. STICHEL ◽  
W. J. ZAKRZEWSKI

The gauge model of nonrelativistic particles on a line interacting with nonstandard gravitational fields5 is supplemented by the addition of a (non)-Abelian gauge interaction. Solving for the gauge fields we obtain equations, in closed form, for a classical two-particle system. The corresponding Schrödinger equation, obtained by the Moyal quantization procedure, is solved analytically. Its solutions exhibit two different confinement mechanisms — dependent on the sign of the coupling λ to the nonstandard gravitational fields. For λ >0 confinement is due to a rising potential, whereas for λ<0 it is due to the dynamical (geometric) bag formation. Numerical results for the corresponding energy spectra are given. For a particular relation between two coupling constants, the model fits into the scheme of supersymmetrical quantum mechanics.


2002 ◽  
Vol 17 (15n17) ◽  
pp. 1097-1106 ◽  
Author(s):  
JEEVA ANANDAN

The conflict between the locality of general relativity, reflected in its space-time description, and the non-locality of quantum mechanics, contained in its Hilbert space description, is discussed. Gauge covariant non-local observables that depend on gauge fields and gravity as well as the wave function are used in order to try to understand and minimize this conflict within the frame-work of these two theories. Applications are made to the Aharonov-Bohm effect and its generalizations to non Abelian gauge fields and gravity.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Yi Yang ◽  
Bo Zhen ◽  
John D. Joannopoulos ◽  
Marin Soljačić

Abstract The Hofstadter model, well known for its fractal butterfly spectrum, describes two-dimensional electrons under a perpendicular magnetic field, which gives rise to the integer quantum Hall effect. Inspired by the real-space building blocks of non-Abelian gauge fields from a recent experiment, we introduce and theoretically study two non-Abelian generalizations of the Hofstadter model. Each model describes two pairs of Hofstadter butterflies that are spin–orbit coupled. In contrast to the original Hofstadter model that can be equivalently studied in the Landau and symmetric gauges, the corresponding non-Abelian generalizations exhibit distinct spectra due to the non-commutativity of the gauge fields. We derive the genuine (necessary and sufficient) non-Abelian condition for the two models from the commutativity of their arbitrary loop operators. At zero energy, the models are gapless and host Weyl and Dirac points protected by internal and crystalline symmetries. Double (8-fold), triple (12-fold), and quadrupole (16-fold) Dirac points also emerge, especially under equal hopping phases of the non-Abelian potentials. At other fillings, the gapped phases of the models give rise to topological insulators. We conclude by discussing possible schemes for experimental realization of the models on photonic platforms.


1982 ◽  
Vol 70 (2) ◽  
pp. 180-189 ◽  
Author(s):  
G. Venturi
Keyword(s):  

1978 ◽  
Vol 19 (2) ◽  
pp. 436-441 ◽  
Author(s):  
R. Maciejko
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document