Microtubules and tubulin sheet polymers elongate from isolated axonemes in vitro as observed by negative-stain electron microscopy

1991 ◽  
Vol 22 (4) ◽  
pp. 405-412 ◽  
Author(s):  
John R. Simon ◽  
Nazir A. Adam ◽  
E.D. Salmon
1990 ◽  
Vol 96 (4) ◽  
pp. 571-582
Author(s):  
J.R. Simon ◽  
E.D. Salmon

Microtubules (MTs) are dynamic polymers that can exist in phases of elongation and rapid-shortening at steady-state. These phases have been observed in vitro and in living cells, and this property of MTs has been termed ‘dynamic instability’. The purpose of this study was to use negative-stain electron microscopy (EM) to test if there are structural differences between the ends of MTs in the elongation and shortening phases, which could provide insight into the mechanisms of dynamic instability. MTs in the elongation phase were obtained by seeding either highly purified porcine brain tubulin (PC-tubulin) or tubulin containing microtubule-associated proteins (MTP), from isolated Tetrahymena axonemes. The results are that, in addition to intact cylindrical MTs, a significant fraction of the tubulin polymer in the elongation phase occurred as sheets of parallel protofilaments, as found in previous investigations with self-assembled MTs. Therefore, sheet formation is an intrinsic property of MT assembly that does not depend on the tubulin purity or the method of nucleation. Also, since sheets lack helical symmetry, at least a fraction of tubulin polymers seeded from axonemes did not assemble by helical addition of tubulin dimers to the ends, an assumption often made in mathematical models of dynamic instability. Sheets and intact MTs that were seeded from isolated axonemes, emanated both from the intact MT wall of the axoneme A-subfiber and from the incomplete wall of the B-subfiber. Therefore, axoneme seeds do not provide a homogeneous nucleation site for tubulin growth, or produce a homogeneous population of tubulin polymers under our conditions. Previous evidence has indicated that MT disassembly can occur by a segmental release of tubulin oligomers from the ends and at sites along the length of MTs. However, these studies were performed with MTP, and disassembly was induced by cold depolymerization. We examined MT shortening under conditions that closely represent shortening via dynamic instability, namely isothermal dilution at 37 degrees C of self-assembled MTs. This was compared with the morphology of cold-disassembled MTs. The cold-depolymerization of MTs composed of MTP showed rings and protofilament curls as previously observed using similar methods. Surprisingly, cold-depolymerization of MTs assembled from PC-tubulin induced not only shortening, but also the opening of a large fraction of MTs into sheets, suggesting that the MT lattice contains a cold-labile seam. Under conditions that mimic stochastic shortening, MTs were intact, closed cylinders with ends that were approximately blunt. Therefore, rapid shortening occurs at the ends of the MT, without a long-range disruption of the MT wall. In conclusion, MTs in the elongation phase can have highly irregular ends and need not elongate by a helical assembly process. Conversely, MTs in the shortening phase can have relatively blunt, even ends and can depolymerize in a relatively uniform fashion.


2019 ◽  
Author(s):  
Adar Sonn-Segev ◽  
Katarina Belacic ◽  
Tatyana Bodrug ◽  
Gavin Young ◽  
Ryan T. VanderLinden ◽  
...  

AbstractSample purity is central to in vitro studies of protein function and regulation, as well as to the efficiency and success of structural studies requiring crystallization or computational alignment of individual molecules. Here, we show that mass photometry (MP) accurately reports on sample heterogeneity using minimal volumes with molecular resolution within minutes. We benchmark our approach by negative stain electron microscopy (nsEM), including workflows involving chemical crosslinking and multi-step purification of a multi-subunit ubiquitin ligase. When applied to proteasome stability, we detect and quantify assemblies invisible to nsEM. Our results illustrate the unique advantages of MP for rapid sample characterization, prioritization and optimization.


1987 ◽  
Vol 105 (6) ◽  
pp. 2847-2854 ◽  
Author(s):  
C A Collins ◽  
R B Vallee

Taxol is a plant alkaloid that binds to and strongly stabilizes microtubules. Taxol-treated microtubules resist depolymerization under a variety of conditions that readily disassemble untreated microtubules. We report here that taxol-treated microtubules can be induced to disassemble by a combination of depolymerizating conditions. Reversible cycles of disassembly and reassembly were carried out using taxol-containing microtubules from calf brain and sea urchin eggs by shifting temperature in the presence of millimolar levels of Ca2+. Microtubules depolymerized completely, yielding dimers and ring-shaped oligomers as revealed by negative stain electron microscopy and Bio-Gel A-15m chromatography, and reassembled into well-formed microtubule polymer structures. Microtubule-associated proteins (MAPs), including species previously identified only by taxol-based purification such as MAP 1B and kinesin, were found to copurify with tubulin through reversible assembly cycles. To determine whether taxol remained bound to tubulin subunits, we subjected depolymerized taxol-treated microtubule protein to Sephadex G-25 chromatography, and the fractions were assayed for taxol content by reverse-phase HPLC. Taxol was found to be dissociated from the depolymerized microtubules. Protein treated in this way was found to be competent to reassemble, but now required conditions comparable with those for protein that had never been exposed to taxol. Thus, the binding of taxol to tubulin can be reversed. This has implications for the mechanism of taxol action and for the purification of microtubules from a wide variety of sources for use in self-assembly experiments.


1993 ◽  
Vol 123 (4) ◽  
pp. 771-783 ◽  
Author(s):  
M P Rout ◽  
G Blobel

Nuclear pore complexes (NPCs) have been isolated from the yeast Saccharomyces. Negative stain electron microscopy of the isolated NPCs and subsequent image reconstruction revealed the octagonal symmetry and many of the ultrastructural features characteristic of vertebrate NPCs. The overall dimensions of the yeast NPC, both in its isolated form as well as in situ, are smaller than its vertebrate counterpart. However, the diameter of the central structures are similar. The isolated yeast NPC has a sedimentation coefficient of approximately 310 S and an M(r) of approximately 66 MD. It retains all but one of the eight known NPC proteins. In addition it contains as many as 80 uncharacterized proteins that are candidate NPC proteins.


2015 ◽  
Vol 1848 (2) ◽  
pp. 496-501 ◽  
Author(s):  
Vincent Postis ◽  
Shaun Rawson ◽  
Jennifer K. Mitchell ◽  
Sarah C. Lee ◽  
Rosemary A. Parslow ◽  
...  

2021 ◽  
Vol 17 (4) ◽  
pp. e1008977
Author(s):  
Rajesh Kumar ◽  
Suprit Deshpande ◽  
Leigh M. Sewall ◽  
Gabriel Ozorowski ◽  
Christopher A. Cottrell ◽  
...  

Evaluating the structure-function relationship of viral envelope (Env) evolution and the development of broadly cross-neutralizing antibodies (bnAbs) in natural infection can inform rational immunogen design. In the present study, we examined the magnitude and specificity of autologous neutralizing antibodies induced in rabbits by a novel HIV-1 clade C Env protein (1PGE-THIVC) vis-à-vis those developed in an elite neutralizer from whom the env sequence was obtained that was used to prepare the soluble Env protein. The novel 1PGE-THIVC Env trimer displayed a native like pre-fusion closed conformation in solution as determined by small angle X-ray scattering (SAXS) and negative stain electron microscopy (EM). This closed spike conformation of 1PGE-THIVC Env trimers was correlated with weak or undetectable binding of non-neutralizing monoclonal antibodies (mAbs) compared to neutralizing mAbs. Furthermore, 1PGE-THIVC SOSIP induced potent neutralizing antibodies in rabbits to autologous virus variants. The autologous neutralizing antibody specificity induced in rabbits by 1PGE-THIVC was mapped to the C3/V4 region (T362/P401) of viral Env. This observation agreed with electron microscopy polyclonal epitope mapping (EMPEM) of the Env trimer complexed with IgG Fab prepared from the immunized rabbit sera. Our study demonstrated neutralization of sequence matched and unmatched autologous viruses by serum antibodies induced in rabbits by 1PGE-THIVC and also highlighted a comparable specificity for the 1PGE-THIVC SOSIP trimer with that seen with polyclonal antibodies elicited in the elite neutralizer by negative-stain electron microscopy polyclonal epitope (ns-EMPEM) mapping.


Sign in / Sign up

Export Citation Format

Share Document