negative stain electron microscopy
Recently Published Documents


TOTAL DOCUMENTS

93
(FIVE YEARS 25)

H-INDEX

28
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Jessica Krakow ◽  
Michal Hammel ◽  
Ying Zhu ◽  
Brian J Hillier ◽  
Bryce Paolella ◽  
...  

Abstract Background COBRA™ (COnditional Bispecific Redirected Activation) T-cell engagers are designed to target solid tumors as a single polypeptide chain prodrug that becomes activated by proteolysis in the tumor microenvironment. One COBRA molecule comprises seven Ig domains: three single-domain antibodies (sdAbs) recognizing a tumor target or human serum albumin (HSA), and CD3ε-binding VH and VL and their inactivated counterparts, VHi and VLi. Pairing of VH and VL, and VLi and VHi, into scFvs is prevented by shortened inter-domain linkers. Instead, VH and VL are expected to interact with VLi and VHi, respectively, thus making a diabody whose binding to CD3ε on the T-cells is impaired. Methods We analyzed the structure of an EGFR COBRA in solution using negative stain electron microscopy (EM) and small-angle X-ray scattering (SAXS). Results We found that this EGFR COBRA forms stable monomers with a very dynamic interdomain arrangement. At most, only five domains at a time appeared ordered, and only one VH-VL pair was found in the Fv orientation. Non-enzymatic post-translational modifications suggest that the CDR3 loops in the VL-VHi pair are exposed but are buried in the VH-VLi pair. The MMP9 cleavage rate of the prodrug when bound to recombinant EGFR or HSA is not affected, indicating positioning of the MMP9-cleavable linker away from the EGFR and HSA binding sites. Conclusion Here we propose a model for EGFR COBRA where VH and VLi form an Fv, and VL and VHi do not, possibly interacting with other Ig domains. SAXS and MMP9 cleavage analyses suggest that all COBRA molecules tested have a similar structural architecture.


2021 ◽  
Author(s):  
Stephen T Hallett ◽  
Pascale Schellenberger ◽  
Lihong Zhou ◽  
Fabienne Beuron ◽  
Ed Morris ◽  
...  

Abstract The multi-component Smc5/6 complex plays a critical role in the resolution of recombination intermediates formed during mitosis and meiosis, and in the cellular response to replication stress. Using recombinant proteins, we have reconstituted a series of defined Saccharomyces cerevisiae Smc5/6 complexes, visualised them by negative stain electron microscopy, and tested their ability to function as an ATPase. We find that only the six protein ‘holo-complex’ is capable of turning over ATP and that its activity is significantly increased by the addition of double-stranded DNA to reaction mixes. Furthermore, stimulation is wholly dependent on functional ATP-binding pockets in both Smc5 and Smc6. Importantly, we demonstrate that budding yeast Nse5/6 acts as a negative regulator of Smc5/6 ATPase activity, binding to the head-end of the complex to suppress turnover, irrespective of the DNA-bound status of the complex.


2021 ◽  
Vol 17 (4) ◽  
pp. e1008977
Author(s):  
Rajesh Kumar ◽  
Suprit Deshpande ◽  
Leigh M. Sewall ◽  
Gabriel Ozorowski ◽  
Christopher A. Cottrell ◽  
...  

Evaluating the structure-function relationship of viral envelope (Env) evolution and the development of broadly cross-neutralizing antibodies (bnAbs) in natural infection can inform rational immunogen design. In the present study, we examined the magnitude and specificity of autologous neutralizing antibodies induced in rabbits by a novel HIV-1 clade C Env protein (1PGE-THIVC) vis-à-vis those developed in an elite neutralizer from whom the env sequence was obtained that was used to prepare the soluble Env protein. The novel 1PGE-THIVC Env trimer displayed a native like pre-fusion closed conformation in solution as determined by small angle X-ray scattering (SAXS) and negative stain electron microscopy (EM). This closed spike conformation of 1PGE-THIVC Env trimers was correlated with weak or undetectable binding of non-neutralizing monoclonal antibodies (mAbs) compared to neutralizing mAbs. Furthermore, 1PGE-THIVC SOSIP induced potent neutralizing antibodies in rabbits to autologous virus variants. The autologous neutralizing antibody specificity induced in rabbits by 1PGE-THIVC was mapped to the C3/V4 region (T362/P401) of viral Env. This observation agreed with electron microscopy polyclonal epitope mapping (EMPEM) of the Env trimer complexed with IgG Fab prepared from the immunized rabbit sera. Our study demonstrated neutralization of sequence matched and unmatched autologous viruses by serum antibodies induced in rabbits by 1PGE-THIVC and also highlighted a comparable specificity for the 1PGE-THIVC SOSIP trimer with that seen with polyclonal antibodies elicited in the elite neutralizer by negative-stain electron microscopy polyclonal epitope (ns-EMPEM) mapping.


Vaccines ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 272
Author(s):  
Joseph R. Francica ◽  
Wei Shi ◽  
Gwo-Yu Chuang ◽  
Steven J. Chen ◽  
Lais Da Silva Pereira ◽  
...  

The most advanced malaria vaccine, RTS,S, includes the central repeat and C-terminal domains of the Plasmodium falciparum circumsporozoite protein (PfCSP). We have recently isolated human antibodies that target the junctional region between the N-terminal and repeat domains that are not included in RTS,S. Due to the fact that these antibodies protect against malaria challenge in mice, their epitopes could be effective vaccine targets. Here, we developed immunogens displaying PfCSP junctional epitopes by genetic fusion to either the N-terminus or B domain loop of the E2 protein from chikungunya (CHIK) alphavirus and produced CHIK virus-like particles (CHIK-VLPs). The structural integrity of these junctional-epitope–CHIK-VLP immunogens was confirmed by negative-stain electron microscopy. Immunization of these CHIK-VLP immunogens reduced parasite liver load by up to 95% in a mouse model of malaria infection and elicited better protection than when displayed on keyhole limpet hemocyanin, a commonly used immunogenic carrier. Protection correlated with PfCSP serum titer. Of note, different junctional sequences elicited qualitatively different reactivities to overlapping PfCSP peptides. Overall, these results show that the junctional epitopes of PfCSP can induce protective responses when displayed on CHIK-VLP immunogens and provide a basis for the development of a next generation malaria vaccine to expand the breadth of anti-PfCSP immunity.


2021 ◽  
Author(s):  
Stephen T. Hallett ◽  
Pascale Schellenberger ◽  
Lihong Zhou ◽  
Fabienne Beuron ◽  
Ed Morris ◽  
...  

ABSTRACTThe multi-component Smc5/6 complex plays a critical role in the resolution of recombination intermediates formed during mitosis and meiosis, and in the cellular response to replication stress. Using recombinant proteins, we have reconstituted a series of defined S. cerevisiae SMC5/6 complexes, visualised them by negative stain electron microscopy, and tested their ability to function as an ATPase. We find that only the six protein ‘holo-complex’ is capable of turning over ATP and that its activity is significantly increased by the addition of double-stranded DNA to reaction mixes. Furthermore, stimulation is wholly dependent on functional ATP-binding pockets in both Smc5 and Smc6. Importantly, we demonstrate that budding yeast Nse5/6 acts as a negative regulator of Smc5/6 ATPase activity, binding to the head-end of the complex to suppress turnover, irrespective of the DNA-bound status of the complex.


2021 ◽  
Vol 220 (4) ◽  
Author(s):  
Rie Ayukawa ◽  
Seigo Iwata ◽  
Hiroshi Imai ◽  
Shinji Kamimura ◽  
Masahito Hayashi ◽  
...  

Nucleation of microtubules (MTs) is essential for cellular activities, but its mechanism is unknown because of the difficulty involved in capturing rare stochastic events in the early stage of polymerization. Here, combining rapid flush negative stain electron microscopy (EM) and kinetic analysis, we demonstrate that the formation of straight oligomers of critical size is essential for nucleation. Both GDP and GTP tubulin form single-stranded oligomers with a broad range of curvatures, but upon nucleation, the curvature distribution of GTP oligomers is shifted to produce a minor population of straight oligomers. With tubulin having the Y222F mutation in the β subunit, the proportion of straight oligomers increases and nucleation accelerates. Our results support a model in which GTP binding generates a minor population of straight oligomers compatible with lateral association and further growth to MTs. This study suggests that cellular factors involved in nucleation promote it via stabilization of straight oligomers.


Vaccines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 73 ◽  
Author(s):  
Yongping Yang ◽  
Wei Shi ◽  
Olubukola M. Abiona ◽  
Alexandra Nazzari ◽  
Adam S. Olia ◽  
...  

The COVID-19 pandemic highlights an urgent need for vaccines that confer protection from SARS-CoV-2 infection. One approach to an effective COVID-19 vaccine may be through the display of SARS-CoV-2 spikes on the surface of virus-like particles, in a manner structurally mimicking spikes on a native virus. Here we report the development of Newcastle disease virus-like particles (NDVLPs) displaying the prefusion-stabilized SARS-CoV-2 spike ectodomain (S2P). Immunoassays with SARS-CoV-2-neutralizing antibodies revealed the antigenicity of S2P-NDVLP to be generally similar to that of soluble S2P, and negative-stain electron microscopy showed S2P on the NDVLP surface to be displayed with a morphology corresponding to its prefusion conformation. Mice immunized with S2P-NDVLP showed substantial neutralization titers (geometric mean ID50 = 386) two weeks after prime immunization, significantly higher than those elicited by a molar equivalent amount of soluble S2P (geometric mean ID50 = 17). Neutralizing titers at Week 5, two weeks after a boost immunization with S2P-NDVLP doses ranging from 2.0 to 250 μg, extended from 2125 to 4552, and these generally showed a higher ratio of neutralization versus ELISA than observed with soluble S2P. Overall, S2P-NDVLP appears to be a promising COVID-19 vaccine candidate capable of eliciting substantial neutralizing activity.


2021 ◽  
Author(s):  
David L. Dai ◽  
S. M. Naimul Hasan ◽  
Geoffrey Woollard ◽  
Stephanie A. Bueler ◽  
Jean-Philippe Julien ◽  
...  

AbstractTuberous Sclerosis protein complex (pTSC) nucleates a proteinaceous signaling hub that integrates information about the internal and external energy status of the cell in regulation of growth and energy consumption. Biochemical and electron cryomicroscopy (cryoEM) studies of recombinant pTSC have revealed the structure and stoichiometry of the pTSC and have hinted at the possibility that the complex form large oligomers. Here, we have partially purified endogenous pTSC from fasted mammalian brains of rat and pig by leveraging a recombinant antigen binding fragment (Fab) specific for the TSC2 subunit of pTSC. We demonstrate Fab dependent purification of pTSC from membrane solubilized fractions of the brain homogenates. Negative stain electron microscopy of the samples purified from pig brain demonstrates rod-shaped protein particles with a width of 10 nm, a variable length as small as 40 nm and a high degree of conformational flexibility. Larger filaments are evident with a similar 10 nm width and up to 1 μm in length in linear and web-like organizations prepared from pig brain. These observations suggest polymerization of endogenous pTSC into filamentous super-structures.


Structure ◽  
2021 ◽  
Vol 29 (1) ◽  
pp. 43-49.e3
Author(s):  
Steven E. Cohen ◽  
Edward J. Brignole ◽  
Elizabeth C. Wittenborn ◽  
Mehmet Can ◽  
Samuel Thompson ◽  
...  

Structure ◽  
2020 ◽  
Vol 28 (12) ◽  
pp. 1271-1287.e5 ◽  
Author(s):  
Daniel F. Azar ◽  
Meryl Haas ◽  
Sofiya Fedosyuk ◽  
Md. Habibur Rahaman ◽  
Andrew Hedger ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document