Organic calcium channel blockers generate the coexistence of two different types of action potentials in the same muscle membrane following chemical induction of excitability

Author(s):  
Conchita Zuazaga ◽  
Alma Tatum ◽  
Lilliam Lizardi ◽  
José Del Castillo
1995 ◽  
Vol 73 (10) ◽  
pp. 1502-1511 ◽  
Author(s):  
John Malysz ◽  
David Richardsons ◽  
Laura Farraway ◽  
Jan D. Huizinga ◽  
Marie-Odile Christen

Intrinsic electrical activities in various isolated segments of the mouse small intestine were recorded (i) to characterize action potential generation and (ii) to obtain a profile on the ion channels involved in initiating the slow wave type action potentials (slow waves). Gradients in slow wave frequency, resting membrane potential, and occurrence of spiking activity were found, with the proximal intestine exhibiting the highest frequency, the most hyperpolarized cell membrane, and the greatest occurrence of spikes. The slow waves were only partially sensitive to L-type calcium channel blockers. Nifedipine, verapamil, and pinaverium bromide abolished spikes that occurred on the plateau phase of the slow waves in all tissues. The activity that remained in the presence of L-type calcium channel blockers, the upstroke potential, retained a similar amplitude to the original slow wave and was of identical frequency. The upstroke potential was not sensitive to a reduction in extracellular chloride or to the sodium channel blockers tetrodotoxin and mexiletine. Abolishment of the Na+ gradient by removal of 120 mM extracellular Na+ reduced the upstroke potential frequency by 13–18% and its amplitude by 50–70% in the ileum. The amplitude was similarly reduced by Ni2+ (up to 5 mM), and by flufenamic acid (100 μM), a nonspecific cation and chloride channel blocker. Gadolinium, a nonspecific blocker of cation and stretch-activated channels, had no effect. Throughout these pharmacological manipulations, a robust oscillation remained at 5–10 mV. This oscillation likely reflects pacemaker activity. It was rapidly abolished by removal of extracellular calcium but not affected by L-type calcium channel blockers. In summary, the mouse small intestine has been established as a model for research into slow wave generation and electrical pacemaker activity. The upstroke part of the slow wave has two components, the pacemaker component involves a non-L-type calcium channel.Key words: slow wave, pacemaker, calcium channel, pinaverium, smooth muscle.


2019 ◽  
Vol 15 (3) ◽  
pp. 207-218 ◽  
Author(s):  
Fatma Ağın

Background:Calcium Channel Blockers (CCBs) are widely used in the treatment of cardiovascular and ischemic heart diseases in recent years. They treat arrhythmias by reducing cardiac cycle contraction and also benefit ischemic heart diseases. Electroanalytical methods are very powerful analytical methods used in the pharmaceutical industry because of the determination of therapeutic agents and/or their metabolites in clinical samples at extremely low concentrations (10-50 ng/ml). The purpose of this review is to gather electroanalytical methods used for the determination of calcium channel blocker drugs in pharmaceutical dosage forms and biological media selected mainly from current articles.Methods:This review mainly includes recent determination studies of calcium channel blockers by electroanalytical methods from pharmaceutical dosage forms and biological samples. The studies of calcium channel blockers electroanalytical determination in the literature were reviewed and interpreted.Results:There are a lot of studies on amlodipine and nifedipine, but the number of studies on benidipine, cilnidipine, felodipine, isradipine, lercanidipine, lacidipine, levamlodipine, manidipine, nicardipine, nilvadipine, nimodipine, nisoldipine, nitrendipine, diltiazem, and verapamil are limited in the literature. In these studies, DPV and SWV are the most used methods. The other methods were used less for the determination of calcium channel blocker drugs.Conclusion:Electroanalytical methods especially voltammetric methods supply reproducible and reliable results for the analysis of the analyte. These methods are simple, more sensitive, rapid and inexpensive compared to the usually used spectroscopic and chromatographic methods.


Sign in / Sign up

Export Citation Format

Share Document