scholarly journals A multidisciplinary optimization approach for vibration reduction in helicopter rotor blades

1993 ◽  
Vol 25 (2) ◽  
pp. 59-72 ◽  
Author(s):  
Aditi Chattopadhyay ◽  
Thomas R. McCarthy
2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Mingxu Yi ◽  
Yalin Pan ◽  
Jun Huang ◽  
Lifeng Wang ◽  
Dawei Liu

In this paper, a comprehensive optimization approach is presented to analyze the aerodynamic, acoustic, and stealth characteristics of helicopter rotor blades in hover flight based on the genetic algorithm (GA). The aerodynamic characteristics are simulated by the blade element momentum theory. And the acoustics are computed by the Farassat theory. The stealth performances are calculated through the combination of physical optics (PO) and equivalent currents (MEC). Furthermore, an advanced geometry representation algorithm which applies the class function/shape function transformation (CST) is introduced to generate the airfoil coordinates. This method is utilized to discuss the airfoil shape in terms of server design variables. The aerodynamic, acoustic, and stealth integrated design aims to achieve the minimum radar cross section (RCS) under the constraint of aerodynamic and acoustic requirement through the adjustment of airfoil shape design variables. Two types of rotor are used to illustrate the optimization method. The results obtained in this work show that the proposed technique is effective and acceptable.


Author(s):  
Alan M. Didion ◽  
Jonathan Kweder ◽  
Mary Ann Clarke ◽  
James E. Smith

Circulation control technology has proven itself useful in the area of short take-off and landing (STOL) fixed wing aircraft by decreasing landing and takeoff distances, increasing maneuverability and lift at lower speeds. The application of circulation control technology to vertical take-off and landing (VTOL) rotorcraft could also prove quite beneficial. Successful adaptation to helicopter rotor blades is currently believed to yield benefits such as increased lift, increased payload capacity, increased maneuverability, reduction in rotor diameter and a reduction in noise. Above all, the addition of circulation control to rotorcraft as controlled by an on-board computer could provide the helicopter with pitch control as well as compensate for asymmetrical lift profiles from forward flight without need for a swashplate. There are an infinite number of blowing slot configurations, each with separate benefits and drawbacks. This study has identified three specific types of these configurations. The high lift configuration would be beneficial in instances where such power is needed for crew and cargo, little stress reduction is offered over the base line configuration. The stress reduction configuration on the other hand, however, offers little extra lift but much in the way of increased rotor lifespan and shorter rotor length. Finally, the middle balanced configuration offers a middle ground between the two extremes. With this configuration, the helicopter benefits in all categories of lift, stress reduction and blade length reduction.


Sign in / Sign up

Export Citation Format

Share Document